Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 38: 467-489, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35850150

RESUMO

Successful immune responses depend on the spatiotemporal coordination of immune cell migration, interactions, and effector functions in lymphoid and parenchymal tissues. Real-time intravital microscopy has revolutionized our understanding of the dynamic behavior of many immune cell types in the living tissues of several species. Observing immune cells in their native environment has revealed many unanticipated facets of their biology, which were not expected from experiments outside a living organism. Here we highlight both classic and more recent examples of surprising discoveries that critically relied on the use of live in vivo imaging. In particular, we focus on five major cell types of the innate immune response (macrophages, microglia, neutrophils, dendritic cells, and mast cells), and how studying their dynamics in mouse tissues has helped us advance our current knowledge of immune cell-mediated tissue homeostasis, host defense, and inflammation.


Assuntos
Imunidade Inata , Microscopia Intravital , Animais , Inflamação , Microscopia Intravital/métodos , Macrófagos , Camundongos
2.
Nat Immunol ; 24(6): 915-924, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081147

RESUMO

Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction1. Many immune cells do not necessarily require integrins, the major family of adhesion receptors in mammals, to move productively through three-dimensional tissue spaces2,3. Instead, they can use alternative strategies to transmit their actin-driven forces to the substrate, explaining their migratory adaptation to changing external environments4-6. However, whether these generalized concepts apply to all immune cells is unclear. Here, we show that the movement of mast cells (immune cells with important roles during allergy and anaphylaxis) differs fundamentally from the widely applied paradigm of interstitial immune cell migration. We identify a crucial role for integrin-dependent adhesion in controlling mast cell movement and localization to anatomical niches rich in KIT ligand, the major mast cell growth and survival factor. Our findings show that substrate-dependent haptokinesis is an important mechanism for the tissue organization of resident immune cells.


Assuntos
Actinas , Integrinas , Animais , Integrinas/metabolismo , Actinas/metabolismo , Mastócitos/metabolismo , Movimento Celular , Leucócitos/metabolismo , Adesão Celular , Mamíferos/metabolismo
3.
Anal Chem ; 95(9): 4325-4334, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36812587

RESUMO

Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 105-107 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step. Here, we present a comprehensively optimized protocol for targeted metabolomics on rare cell types, such as hematopoietic stem cells and mast cells. Only 5000 cells per sample are required to detect up to 80 metabolites above background. The use of regular-flow liquid chromatography allows for robust data acquisition, and the omission of drying or chemical derivatization avoids potential sources of error. Cell-type-specific differences are preserved while the addition of internal standards, generation of relevant background control samples, and targeted metabolite with quantifiers and qualifiers ensure high data quality. This protocol could help numerous studies to gain thorough insights into cellular metabolic profiles and simultaneously reduce the number of laboratory animals and the time-consuming and costly experiments associated with rare cell-type purification.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Metabolômica/métodos , Metaboloma , Fenômenos Fisiológicos Celulares
4.
Nat Methods ; 12(5): 445-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25775045

RESUMO

Neutrophil granulocyte biology is a central issue of immunological research, but the lack of animal models that allow for neutrophil-selective genetic manipulation has delayed progress. By modulating the neutrophil-specific locus Ly6G with a knock-in allele expressing Cre recombinase and the fluorescent protein tdTomato, we generated a mouse model termed Catchup that exhibits strong neutrophil specificity. Transgene activity was found only in very few eosinophils and basophils and was undetectable in bone marrow precursors, including granulomonocytic progenitors (GMPs). Cre-mediated reporter-gene activation allowed for intravital two-photon microscopy of neutrophils without adoptive transfer. Homozygous animals were Ly6G deficient but showed normal leukocyte cellularity in all measured organs. Ly6G-deficient neutrophils were functionally normal in vitro and in multiple models of sterile or infectious inflammation in vivo. However, Cre-mediated deletion of FcγRIV in neutrophils reduced the cells' recruitment to immune-complex-mediated peritonitis, suggesting a cell-intrinsic role for activating Fc receptors in neutrophil trafficking.


Assuntos
Neutrófilos/citologia , Neutrófilos/fisiologia , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Morte Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica/fisiologia , Técnicas de Transferência de Genes , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peritonite/patologia , Espécies Reativas de Oxigênio , Transgenes/genética
5.
Nat Cell Biol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969763

RESUMO

Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA