Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760112

RESUMO

The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

2.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760113

RESUMO

The Southern Ocean is a hotspot of the climate-relevant organic sulfur compound dimethyl sulfide (DMS). Spatial and temporal variability in DMS concentration is higher than in any other oceanic region, especially in the marginal ice zone. During a one-week expedition across the continental shelf of the West Antarctic Peninsula (WAP), from the shelf break into Marguerite Bay, in January 2015, spatial heterogeneity of DMS and its precursor dimethyl sulfoniopropionate (DMSP) was studied and linked with environmental conditions, including sea-ice melt events. Concentrations of sulfur compounds, particulate organic carbon (POC) and chlorophyll a in the surface waters varied by a factor of 5-6 over the entire transect. DMS and DMSP concentrations were an order of magnitude higher than currently inferred in climatologies for the WAP region. Particulate DMSP concentrations were correlated most strongly with POC and the abundance of haptophyte algae within the phytoplankton community, which, in turn, was linked with sea-ice melt. The strong sea-ice signal in the distribution of DMS(P) implies that DMS(P) production is likely to decrease with ongoing reductions in sea-ice cover along the WAP. This has implications for feedback processes on the region's climate system.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

3.
J Phycol ; 50(6): 1070-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26988788

RESUMO

The pigment composition of Phaeocystis antarctica was monitored under various conditions of light, temperature, salinity, and iron. 19'-Hexanoyloxyfucoxanthin (Hex-fuco) always constituted the major light-harvesting pigment, with remarkably stable ratios of Hex-fuco-to-chl a under the various environmental conditions. Increased pigment-to-chl a ratios at low irradiance confirmed the light-harvesting function of Fucoxanthin (Fuco), 19'-Hexanoyloxy-4-ketofucoxanthin (Hex-kfuco), 19'-butanoyloxyfucoxanthin (But-fuco), and chl c2 and c3. Increased pigment-to-chl a ratios at high irradiance, low iron concentrations, and to a lesser extent at high salinity confirmed the photoprotective function of diadinoxanthin, diatoxanthin, and ß,ß-carotene. Pigment ratios were not always according to expectations. The consistent increase in But-fuco/chl at high temperature, high salinity, and low iron suggests a role in photoprotection rather than in light harvesting. Low Hex-kfuco/chl ratios at high salinity were consistent with a role as light harvester, but the high ratios at high temperature were not, leaving the function of Hex-kfuco enigmatic. Dedicated experiments were performed to test whether or not the light-harvesting pigment Fuco could be converted into its structural relative Hex-fuco, and vice versa, in response to exposure to light shifts. Rapid conversions could not be confirmed, but long-term conversions cannot be excluded. New pigment ratios are proposed for chemotaxonomic applications. The ratios will improve pigment-based diagnosis of algal species in waters dominated by P. antarctica.

4.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807695

RESUMO

The general aim of this work was to compare the leaf-level responses of different protective components to water deficit and high temperatures in Quercus cerris L. and Quercus robur L. Several biochemical components of the osmotic adjustment and antioxidant system were investigated together with changes in hormones. Q. cerris and Q. robur seedlings responded to water deficit and high temperatures by: (1) activating a different pattern of osmoregulation and antioxidant mechanisms depending on the species and on the nature of the stress; (2) upregulating the synthesis of a newly-explored osmoprotectant, dimethylsulphoniopropionate (DMSP); (3) trading-off between metabolites; and (4) modulating hormone levels. Under water deficit, Q. cerris had a higher antioxidant capacity compared to Q. robur, which showed a lower investment in the antioxidant system. In both species, exposure to high temperatures induced a strong osmoregulation capacity that appeared largely conferred by DMSP in Q. cerris and by glycine betaine in Q. robur. Collectively, the more stress-responsive compounds in each species were those present at a significant basal level in non-stress conditions. Our results were discussed in terms of pre-adaptation and stress-induced metabolic patterns as related to species-specific stress tolerance features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA