Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(6): 1125-1139, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38759652

RESUMO

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.


Assuntos
Metilação de DNA , Genoma Humano , Espermatogênese , Humanos , Espermatogênese/genética , Masculino , Espermátides/metabolismo , Espermatócitos/metabolismo , Elementos de DNA Transponíveis/genética , Espermatozoides/metabolismo , Meiose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cell ; 143(4): 617-27, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21056461

RESUMO

Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.


Assuntos
Camadas Germinativas/citologia , Camundongos/embriologia , Células-Tronco/citologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/análise , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
3.
Blood ; 138(21): 2051-2065, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34370827

RESUMO

Hematopoietic stem and progenitor cell (HSPC) function in bone marrow (BM) is controlled by stroma-derived signals, but the identity and interplay of these signals remain incompletely understood. Here, we show that sympathetic nerve-derived dopamine directly controls HSPC behavior through D2 subfamily dopamine receptors. Blockade of dopamine synthesis, as well as pharmacological or genetic inactivation of D2 subfamily dopamine receptors, leads to reduced HSPC frequency, inhibition of proliferation, and low BM transplantation efficiency. Conversely, treatment with a D2-type receptor agonist increases BM regeneration and transplantation efficiency. Mechanistically, dopamine controls expression of the lymphocyte-specific protein tyrosine kinase (Lck), which, in turn, regulates MAPK-mediated signaling triggered by stem cell factor in HSPCs. Our work reveals critical functional roles of dopamine in HSPCs, which may open up new therapeutic options for improved BM transplantation and other conditions requiring the rapid expansion of HSPCs.


Assuntos
Dopamina/metabolismo , Células-Tronco Hematopoéticas/citologia , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Proliferação de Células , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Camundongos
4.
Hum Reprod ; 38(4): 655-670, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807972

RESUMO

STUDY QUESTION: Is the vertebrate protein Dead end (DND1) a causative factor for human infertility and can novel in vivo assays in zebrafish help in evaluating this? SUMMARY ANSWER: Combining patient genetic data with functional in vivo assays in zebrafish reveals a possible role for DND1 in human male fertility. WHAT IS KNOWN ALREADY: About 7% of the male population is affected by infertility but linking specific gene variants to the disease is challenging. The function of the DND1 protein was shown to be critical for germ cell development in several model organisms but a reliable and cost-effective method for evaluating the activity of the protein in the context of human male infertility is still missing. STUDY DESIGN, SIZE, DURATION: Exome data from 1305 men included in the Male Reproductive Genomics cohort were examined in this study. A total of 1114 of the patients showed severely impaired spermatogenesis but were otherwise healthy. Eighty-five men with intact spermatogenesis were included in the study as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: We screened the human exome data for rare, stop-gain, frameshift, splice site, as well as missense variants in DND1. The results were validated by Sanger sequencing. Immunohistochemical techniques and, when possible, segregation analyses were performed for patients with identified DND1 variants. The amino acid exchange in the human variant was mimicked at the corresponding site of the zebrafish protein. Using different aspects of germline development in live zebrafish embryos as biological assays, we examined the activity level of these DND1 protein variants. MAIN RESULTS AND THE ROLE OF CHANCE: In human exome sequencing data, we identified four heterozygous variants in DND1 (three missense and one frameshift variant) in five unrelated patients. The function of all of the variants was examined in the zebrafish and one of those was studied in more depth in this model. We demonstrate the use of zebrafish assays as a rapid and effective biological readout for evaluating the possible impact of multiple gene variants on male fertility. This in vivo approach allowed us to assess the direct impact of the variants on germ cell function in the context of the native germline. Focusing on the DND1 gene, we find that zebrafish germ cells, expressing orthologs of DND1 variants identified in infertile men, failed to arrive correctly at the position where the gonad develops and exhibited defects in cell fate maintenance. Importantly, our analysis facilitated the evaluation of single nucleotide variants, whose impact on protein function is difficult to predict, and allowed us to distinguish variants that do not affect the protein's activity from those that strongly reduce it and could thus potentially be the primary cause for the pathological condition. These aberrations in germline development resemble the testicular phenotype of azoospermic patients. LIMITATIONS, REASONS FOR CAUTION: The pipeline we present requires access to zebrafish embryos and to basic imaging equipment. The notion that the activity of the protein in the zebrafish-based assays is relevant for the human homolog is well supported by previous knowledge. Nevertheless, the human protein may differ in some respects from its homologue in zebrafish. Thus, the assay should be considered only one of the parameters used in defining DND1 variants as causative or non-causative for infertility. WIDER IMPLICATIONS OF THE FINDINGS: Using DND1 as an example, we have shown that the approach described in this study, relying on bridging between clinical findings and fundamental cell biology, can help to establish links between novel human disease candidate genes and fertility. In particular, the power of the approach we developed is manifested by the fact that it allows the identification of DND1 variants that arose de novo. The strategy presented here can be applied to different genes in other disease contexts. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the German Research Foundation, Clinical Research Unit, CRU326 'Male Germ Cells'. There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Infertilidade Masculina , Peixe-Zebra , Animais , Humanos , Masculino , Peixe-Zebra/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Testículo/patologia , Fertilidade , Fenótipo , Proteínas de Neoplasias/genética
5.
EMBO Rep ; 22(11): e53048, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515391

RESUMO

During implantation, the murine embryo transitions from a "quiet" into an active metabolic/proliferative state, which kick-starts the growth and morphogenesis of the post-implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine-tunes the expression of genes that encode ribosomal proteins and is required for proper tissue-scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage's high-energy demands for cell proliferation and morphogenesis.


Assuntos
Desenvolvimento Embrionário , Células-Tronco Embrionárias , Animais , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Camundongos
6.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30297530

RESUMO

Endothelial cells line blood and lymphatic vessels and form intercellular junctions, which preserve vessel structure and integrity. The vascular endothelial cadherin, VE-cadherin, mediates endothelial adhesion and is indispensible for blood vessel development and permeability regulation. However, its requirement for lymphatic vessels has not been addressed. During development, VE-cadherin deletion in lymphatic endothelial cells resulted in abortive lymphangiogenesis, edema, and prenatal death. Unexpectedly, inducible postnatal or adult deletion elicited vessel bed-specific responses. Mature dermal lymph vessels resisted VE-cadherin loss and maintained button junctions, which was associated with an upregulation of junctional molecules. Very different, mesenteric lymphatic collectors deteriorated and formed a strongly hyperplastic layer of lymphatic endothelial cells on the mesothelium. This massive hyperproliferation may have been favored by high mesenteric VEGF-C expression and was associated with VEGFR-3 phosphorylation and upregulation of the transcriptional activator TAZ Finally, intestinal lacteals fragmented into cysts or became highly distended possibly as a consequence of the mesenteric defects. Taken together, we demonstrate here the importance of VE-cadherin for lymphatic vessel development and maintenance, which is however remarkably vessel bed-specific.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Derme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese , Vasos Linfáticos/metabolismo , Mesentério/embriologia , Animais , Antígenos CD/genética , Caderinas/genética , Células Endoteliais/metabolismo , Deleção de Genes , Camundongos , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 40(2): 378-393, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826650

RESUMO

OBJECTIVE: Vascular endothelial (VE)-cadherin is of dominant importance for the formation and stability of endothelial junctions, yet induced gene inactivation enhances vascular permeability in the lung but does not cause junction rupture. This study aims at identifying the junctional adhesion molecule, which is responsible for preventing endothelial junction rupture in the pulmonary vasculature in the absence of VE-cadherin. Approach and Results: We have compared the relevance of ESAM (endothelial cell-selective adhesion molecule), JAM (junctional adhesion molecule)-A, PECAM (platelet endothelial cell adhesion molecule)-1, and VE-cadherin for vascular barrier integrity in various mouse tissues. Gene inactivation of ESAM enhanced vascular permeability in the lung but not in the heart, skin, and brain. In contrast, deletion of JAM-A or PECAM-1 did not affect barrier integrity in any of these organs. Blocking VE-cadherin with antibodies caused lethality in ESAM-/- mice within 30 minutes but had no such effect in JAM-A-/-, PECAM-1-/- or wild-type mice. Likewise, induced gene inactivation of VE-cadherin caused rapid lethality only in the absence of ESAM. Ultrastructural analysis revealed that only combined interference with VE-cadherin and ESAM disrupted endothelial junctions and caused massive blood coagulation in the lung. Mechanistically, we could exclude a role of platelet ESAM in coagulation, changes in the expression of other junctional proteins or a contribution of cytoplasmic signaling domains of ESAM. CONCLUSIONS: Despite well-documented roles of JAM-A and PECAM-1 for the regulation of endothelial junctions, only for ESAM, we detected an essential role for endothelial barrier integrity in a tissue-specific way. In addition, we found that it is ESAM which prevents endothelial junction rupture in the lung when VE-cadherin is absent.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Moléculas de Adesão Celular/metabolismo , Morte Celular/fisiologia , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Adesão Celular , Células Cultivadas , Cricetinae , Endotélio Vascular/ultraestrutura , Feminino , Immunoblotting , Pulmão/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Modelos Animais , Transdução de Sinais
8.
Development ; 144(5): 795-807, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137894

RESUMO

Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating ß1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Integrina beta1/fisiologia , Neurogênese/fisiologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal , Adesão Celular , Diferenciação Celular , Proliferação de Células , Hibridização In Situ , Neurônios/citologia , Filogenia , Interferência de RNA , Transdução de Sinais , Células-Tronco/citologia
9.
Acta Neuropathol ; 140(5): 715-736, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32894330

RESUMO

Multiple sclerosis (MS) is the most frequent demyelinating disease in young adults and despite significant advances in immunotherapy, disease progression still cannot be prevented. Promotion of remyelination, an endogenous repair mechanism resulting in the formation of new myelin sheaths around demyelinated axons, represents a promising new treatment approach. However, remyelination frequently fails in MS lesions, which can in part be attributed to impaired differentiation of oligodendroglial progenitor cells into mature, myelinating oligodendrocytes. The reasons for impaired oligodendroglial differentiation and defective remyelination in MS are currently unknown. To determine whether intrinsic oligodendroglial factors contribute to impaired remyelination in relapsing-remitting MS (RRMS), we compared induced pluripotent stem cell-derived oligodendrocytes (hiOL) from RRMS patients and controls, among them two monozygous twin pairs discordant for MS. We found that hiOL from RRMS patients and controls were virtually indistinguishable with respect to remyelination-associated functions and proteomic composition. However, while analyzing the effect of extrinsic factors we discovered that supernatants of activated peripheral blood mononuclear cells (PBMCs) significantly inhibit oligodendroglial differentiation. In particular, we identified CD4+ T cells as mediators of impaired oligodendroglial differentiation; at least partly due to interferon-gamma secretion. Additionally, we observed that blocked oligodendroglial differentiation induced by PBMC supernatants could not be restored by application of oligodendroglial differentiation promoting drugs, whereas treatment of PBMCs with the immunomodulatory drug teriflunomide prior to supernatant collection partly rescued oligodendroglial differentiation. In summary, these data indicate that the oligodendroglial differentiation block is not due to intrinsic oligodendroglial factors but rather caused by the inflammatory environment in RRMS lesions which underlines the need for drug screening approaches taking the inflammatory environment into account. Combined, these findings may contribute to the development of new remyelination promoting strategies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Oligodendroglia/patologia , Remielinização/imunologia , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Interferon gama/imunologia , Células Precursoras de Oligodendrócitos/patologia
10.
EMBO J ; 34(8): 1009-24, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25750208

RESUMO

Primordial germ cells (PGCs) develop only into sperm and oocytes in vivo. The molecular mechanisms underlying human PGC specification are poorly understood due to inaccessibility of cell materials and lack of in vitro models for tracking the earliest stages of germ cell development. Here, we describe a defined and stepwise differentiation system for inducing pre-migratory PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs). In response to cytokines, PSCs differentiate first into a heterogeneous mesoderm-like cell population and then into PGCLCs, which exhibit minimal PRDM14 expression. PGC specification in humans is similar to the murine process, with the sequential activation of mesodermal and PGC genes, and the suppression of neural induction and of de novo DNA methylation, suggesting that human PGC formation is induced via epigenesis, the process of germ cell specification via inductive signals from surrounding somatic cells. This study demonstrates that PGC commitment in humans shares key features with that of the mouse, but also highlights key differences, including transcriptional regulation during the early stage of human PGC development (3-6 weeks). A more comprehensive understanding of human germ cell development may lead to methodology for successfully generating PSC-derived gametes for reproductive medicine.


Assuntos
Diferenciação Celular/genética , Células Germinativas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/genética , Ativinas/farmacologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA , Epigênese Genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Germinativas/citologia , Humanos , Camundongos , Análise em Microsséries , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteínas de Ligação a RNA , Fatores de Transcrição , Transcriptoma/efeitos dos fármacos
11.
EMBO J ; 32(2): 219-30, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23188081

RESUMO

In mammals, postnatal haematopoiesis occurs in the bone marrow (BM) and involves specialized microenvironments controlling haematopoietic stem cell (HSC) behaviour and, in particular, stem cell dormancy and self-renewal. While these processes have been linked to a number of different stromal cell types and signalling pathways, it is currently unclear whether BM has a homogenous architecture devoid of structural and functional partitions. Here, we show with genetic labelling techniques, high-resolution imaging and functional experiments in mice that the periphery of the adult BM cavity harbours previously unrecognized compartments with distinct properties. These units, which we have termed hemospheres, were composed of endothelial, haematopoietic and mesenchymal cells, were enriched in CD150+ CD48- putative HSCs, and enabled rapid haematopoietic cell proliferation and clonal expansion. Inducible gene targeting of the receptor tyrosine kinase VEGFR2 in endothelial cells disrupted hemospheres and, concomitantly, reduced the number of CD150+ CD48- cells. Our results identify a previously unrecognized, vessel-associated BM compartment with a specific localization and properties distinct from the marrow cavity.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Proliferação de Células , Hematopoese/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Separação Celular , Células Cultivadas , Células Clonais/fisiologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos
12.
Proc Natl Acad Sci U S A ; 111(31): 11389-94, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049415

RESUMO

The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.


Assuntos
Movimento Celular , Proteínas RGS/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Caderinas/metabolismo , Movimento Celular/genética , Polaridade Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas RGS/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
EMBO J ; 31(15): 3363-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22728826

RESUMO

The spleen tyrosine kinase family members Syk and Zap-70 are pivotal signal transducers downstream of antigen receptors and exhibit overlapping expression patterns at early lymphocytic developmental stages. To assess their differential kinase fitness in vivo, we generated mice, which carry a Zap-70 cDNA knock-in controlled by intrinsic Syk promoter elements that disrupts wild-type Syk expression. Kinase replacement severely compromised Erk1/2-mediated survival and proper selection of developing B cells at central and peripheral checkpoints, demonstrating critical dependence on BCR signalling quality. Furthermore, ITAM- and hemITAM-mediated activation of platelets and neutrophils was completely blunted, while surprisingly FcγR-mediated phagocytosis in macrophages was retained. The alteration in BCR signalling quality resulted in preferential development and survival of marginal zone B cells and prominent autoreactivity, causing the generation of anti-insulin antibodies and age-related glomerulonephritis. Development of concomitant fasting glucose intolerance in knock-in mice highlights aberrant B cell selection as a potential risk factor for type 1 diabetes, and suggests altered BCR signalling as a mechanism to cause biased cellular and Ig repertoire selection, ultimately contributing to B cell-mediated autoimmune predisposition.


Assuntos
Doenças Autoimunes/genética , Estado Pré-Diabético/genética , Proteínas Proto-Oncogênicas c-bcr/fisiologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Células Cultivadas , Técnicas de Introdução de Genes , Rearranjo Gênico do Linfócito B/genética , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Transdução de Sinais/genética , Quinase Syk , Proteína-Tirosina Quinase ZAP-70/genética
14.
Eur J Immunol ; 45(2): 603-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25382621

RESUMO

Syk and Zap-70 constitute a closely related nonreceptor protein tyrosine kinase family, of which both members are functionally indispensable for conferring their respective antigen receptors with enzymatic activity. In this study, we analyze the impact of altering BCR signaling output on B-cell germinal center (GC) fate selection by constitutive, as well as inducible, monoallelic Syk kinase loss in the presence of a Zap-70 knock-in rescue allele. Cre-mediated Syk deletion in Syk(flox/Zap-70) B cells lowers pErk, but not pAkt-mediated signaling. Surprisingly, the use of a B-cell-specific constitutive mb1-cre deleter mouse model showed that a small cohort of peripheral Syk(flox/Zap-70);mb1-cre B cells efficiently circumvents deletion, which ultimately favors these Syk-sufficient cells to contribute to the GC reaction. Using a developmentally unbiased Syk(flox/Zap-70);mb1-creER(T2) approach in combination with an inducible tdRFP allele, we further demonstrate that this monoallelic deletion escape is not fully explained by leakiness of Cre expression, but is possibly the result of differential Syk locus accessibility in maturing B cells. Altogether, this underscores the importance of proper Syk kinase function not only during central and peripheral selection processes, but also during GC formation and maintenance.


Assuntos
Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Alelos , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Teste de Complementação Genética , Centro Germinativo/citologia , Centro Germinativo/imunologia , Integrases/genética , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais , Quinase Syk , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/imunologia
15.
Biochem Biophys Res Commun ; 443(2): 700-5, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333870

RESUMO

Functional endothelial cells and their progenitors are required for vascular development, adequate vascular function, vascular repair and for cell-based therapies of ischemic diseases. Currently, cell therapy is limited by the low abundance of patient-derived cells and by the functional impairment of autologous endothelial progenitor cells (EPCs). In the present study, murine germline-derived pluripotent stem (gPS) cells were evaluated as a potential source for functional endothelial-like cells. Cells displaying an endothelial cell-like morphology were obtained from gPS cell-derived embryoid bodies using a combination of fluorescence-activated cell sorting (FACS)-based selection of CD31-positive cells and their subsequent cultivation on OP9 stromal cells in the presence of VEGF-A. Real-time reverse transcriptase polymerase chain reaction, FACS analysis and immunofluorescence staining showed that the gPS cell-derived endothelial-like cells (gPS-ECs) expressed endothelial cell-specific markers including von Willebrand Factor, Tie2, VEGFR2/Flk1, intercellular adhesion molecule 2 and vascular endothelial-cadherin. The high expression of ephrin B2, as compared to Eph B4 and VEGFR3, suggests an arterial rather than a venous or lymphatic differentiation. Their capability to take up Dil-conjugated acetylated low-density lipoprotein and to form capillary-like networks on matrigel confirmed their functionality. We conclude that gPS cells could be a novel source of endothelial cells potentially suitable for regenerative cell-based therapies for ischemic diseases.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Engenharia Tecidual/métodos , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/fisiologia , Camundongos
16.
Stem Cells ; 31(11): 2343-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922292

RESUMO

The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.


Assuntos
Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Oócitos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Transferência Nuclear , Oócitos/citologia , Oócitos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Tetraploidia
17.
Nat Commun ; 15(1): 2539, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570531

RESUMO

Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.


Assuntos
Células Endoteliais , Efrinas , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Artérias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Separação Celular , Receptor EphB4/genética , Receptor EphB4/metabolismo
18.
Hum Mol Genet ; 20(1): 115-25, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20940145

RESUMO

Molecular mechanisms underlying the commitment of cells to the germ cell lineage during mammalian embryogenesis remain poorly understood due to the limited availability of cellular materials to conduct in vitro analyses. Although primordial germ cells (PGCs)--precursors to germ cells--have been generated from embryonic stem cells (ESCs)--pluripotent stem cells derived from the inner cell mass of the blastocyst of the early embryo in vitro-the simultaneous expression of cell surface receptors and transcription factors complicates the detection of PGCs. To date, only a few genes that mark the onset of germ cell commitment in the epiblast--the outer layer of cells of the embryo--including tissue non-specific alkaline phosphatase (TNAP), Blimp1, Stella and Fragilis--have been used with some success to detect PGC formation in in vitro model systems. Here, we identified 11 genes (three of which are novel) that are specifically expressed in male and female fetal germ cells, both in vivo and in vitro, but are not expressed in ESCs. Expression of these genes allows us to distinguish committed germ cells from undifferentiated pluripotent cell populations, a prerequisite for the successful derivation of germ cells and gametes in vitro.


Assuntos
Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Endodesoxirribonucleases/genética , Feminino , Desenvolvimento Fetal/genética , Marcadores Genéticos , Humanos , Masculino , Meiose , Camundongos , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
19.
Development ; 137(7): 1055-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20215344

RESUMO

Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.


Assuntos
Proliferação de Células , Planárias/anatomia & histologia , Planárias/embriologia , Células-Tronco Pluripotentes/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Homeostase , Hibridização In Situ , Fenótipo , Planárias/genética , Planárias/efeitos da radiação , Células-Tronco Pluripotentes/citologia , RNA/genética , RNA/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Regeneração/fisiologia
20.
Blood ; 117(10): 2935-43, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21224473

RESUMO

The FIP1L1-PDGFRA fusion is seen in a fraction of cases with a presumptive diagnosis of hypereosinophilic syndrome (HES). However, because most HES patients lack FIP1L1-PDGFRA, we studied whether they harbor activating mutations of the PDGFRA gene. Sequencing of 87 FIP1L1-PDGFRA-negative HES patients revealed several novel PDGFRA point mutations (R481G, L507P, I562M, H570R, H650Q, N659S, L705P, R748G, and Y849S). When cloned into 32D cells, N659S and Y849S and-on selection for high expressors-also H650Q and R748G mutants induced growth factor-independent proliferation, clonogenic growth, and constitutive phosphorylation of PDGFRA and Stat5. Imatinib antagonized Stat5 phosphorylation. Mutations involving positions 659 and 849 had been shown previously to possess transforming potential in gastrointestinal stromal tumors. Because H650Q and R748G mutants possessed only weak transforming activity, we injected 32D cells harboring these mutants or FIP1L1-PDGFRA into mice and found that they induced a leukemia-like disease. Oral imatinib treatment significantly decreased leukemic growth in vivo and prolonged survival. In conclusion, our data provide evidence that imatinib-sensitive PDGFRA point mutations play an important role in the pathogenesis of HES and we propose that more research should be performed to further define the frequency and treatment response of PDGFRA mutations in FIP1L1-PDGFRA-negative HES patients.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/genética , Síndrome Hipereosinofílica/genética , Leucemia/genética , Piperazinas/farmacologia , Mutação Puntual , Pirimidinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Benzamidas , Western Blotting , Separação Celular , Feminino , Citometria de Fluxo , Humanos , Mesilato de Imatinib , Leucemia/tratamento farmacológico , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA