Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 101(6): 1186-1199, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271934

RESUMO

Calcimimetic agents allosterically increase the calcium ion sensitivity of the calcium-sensing receptor (CaSR), which is expressed in the tubular system and to a lesser extent in podocytes. Activation of this receptor can reduce glomerular proteinuria and structural damage in proteinuric animal models. However, the precise role of the podocyte CaSR remains unclear. Here, a CaSR knockdown in cultured murine podocytes and a podocyte-specific CaSR knockout in BALB/c mice were generated to study its role in proteinuria and kidney function. Podocyte CaSR knockdown abolished the calcimimetic R-568 mediated calcium ion-influx, disrupted the actin cytoskeleton, and reduced cellular attachment and migration velocity. Adriamycin-induced proteinuria enhanced glomerular CaSR expression in wild-type mice. Albuminuria, podocyte foot process effacement, podocyte loss and glomerular sclerosis were significantly more pronounced in adriamycin-treated podocyte-specific CaSR knockout mice compared to wild-type littermates. Co-treatment of wild-type mice with adriamycin and the calcimimetic cinacalcet reduced proteinuria in wild-type, but not in podocyte-specific CaSR knockout mice. Additionally, four children with nephrotic syndrome, whose parents objected to glucocorticoid therapy, were treated with cinacalcet for one to 33 days. Proteinuria declined transiently by up to 96%, serum albumin increased, and edema resolved. Thus, activation of podocyte CaSR regulates key podocyte functions in vitro and reduced toxin-induced proteinuria and glomerular damage in mice. Hence, our findings suggest a potential novel role of CaSR signaling in control of glomerular disease.


Assuntos
Nefropatias , Podócitos , Animais , Cálcio/metabolismo , Cinacalcete/farmacologia , Cinacalcete/uso terapêutico , Doxorrubicina/toxicidade , Humanos , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
2.
Med Genet ; 36(3): 179-188, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39257928

RESUMO

For those affected, infertility is linked to impaired overall health and reduced life expectancy. In particular, infertile individuals bear an increased risk for cardiovascular disease (CVD) and different types of cancer, partially due to lifestyle differences and to genetic alterations that cause both infertility and an increased cancer risk. Genetic variants causing an increased CVD risk are more commonly found in infertile individuals, but their link to infertility remains unclear. Offspring of infertile couples, conceived via medically assisted reproduction, are as likely as their parents to exhibit or develop adiposity, hormonal alterations such as insulin resistance, and infertility. The effects on health of subsequent generations are completely unclear.

3.
Nat Commun ; 15(1): 6637, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122675

RESUMO

piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells.


Assuntos
Elementos de DNA Transponíveis , Infertilidade Masculina , RNA Interferente Pequeno , Espermatogênese , Testículo , Masculino , Humanos , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Elementos de DNA Transponíveis/genética , Animais , Testículo/metabolismo , Camundongos , Adulto , Inativação Gênica , Camundongos Knockout , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Espermatogônias/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA de Interação com Piwi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA