RESUMO
The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-2 and SoxE transcription factors. NC induction robustness is ensured through the ability of some of these transcription factors to compensate loss of function of gene family members. However the gene regulatory events underlying compensation are poorly understood. We have used gene knockout and RNA sequencing strategies to dissect NC induction and compensation in zebrafish. We genetically ablate the NC using double mutants of tfap2a;tfap2c or remove specific subsets of the NC with sox10 and mitfa knockouts and characterise genome-wide gene expression levels across multiple time points. We find that compensation through a single wild-type allele of tfap2c is capable of maintaining early NC induction and differentiation in the absence of tfap2a function, but many target genes have abnormal expression levels and therefore show sensitivity to the reduced tfap2 dosage. This separation of morphological and molecular phenotypes identifies a core set of genes required for early NC development. We also identify the 15 somites stage as the peak of the molecular phenotype which strongly diminishes at 24 hpf even as the morphological phenotype becomes more apparent. Using gene knockouts, we associate previously uncharacterised genes with pigment cell development and establish a role for maternal Hippo signalling in melanocyte differentiation. This work extends and refines the NC GRN while also uncovering the transcriptional basis of genetic compensation via paralogues.
Assuntos
Desenvolvimento Embrionário/genética , Crista Neural/crescimento & desenvolvimento , Fatores de Transcrição SOXE/genética , Fator de Transcrição AP-2/genética , Proteínas de Peixe-Zebra/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Crista Neural/metabolismo , Pigmentação/genética , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3 , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
Dystroglycan, an extracellular matrix receptor, has essential functions in various tissues. Loss of α-dystroglycan-laminin interaction due to defective glycosylation of α-dystroglycan underlies a group of congenital muscular dystrophies often associated with brain malformations, referred to as dystroglycanopathies. The lack of isogenic human dystroglycanopathy cell models has limited our ability to test potential drugs in a human- and neural-specific context. Here, we generated induced pluripotent stem cells (iPSCs) from a severe dystroglycanopathy patient with homozygous FKRP (fukutin-related protein gene) mutation. We showed that CRISPR/Cas9-mediated gene correction of FKRP restored glycosylation of α-dystroglycan in iPSC-derived cortical neurons, whereas targeted gene mutation of FKRP in wild-type cells disrupted this glycosylation. In parallel, we screened 31,954 small molecule compounds using a mouse myoblast line for increased glycosylation of α-dystroglycan. Using human FKRP-iPSC-derived neural cells for hit validation, we demonstrated that compound 4-(4-bromophenyl)-6-ethylsulfanyl-2-oxo-3,4-dihydro-1H-pyridine-5-carbonitrile (4BPPNit) significantly augmented glycosylation of α-dystroglycan, in part through upregulation of LARGE1 glycosyltransferase gene expression. Together, isogenic human iPSC-derived cells represent a valuable platform for facilitating dystroglycanopathy drug discovery and therapeutic development.
Assuntos
Avaliação Pré-Clínica de Medicamentos , Distroglicanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Distroglicanas/genética , Edição de Genes , Marcação de Genes , Loci Gênicos , Glicosilação/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imagem Molecular , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/metabolismoRESUMO
KDM2A is a histone demethylase associated with transcriptional silencing, however very little is known about its in vivo role in development and disease. Here we demonstrate that loss of the orthologue kdm2aa in zebrafish causes widespread transcriptional disruption and leads to spontaneous melanomas at a high frequency. Fish homozygous for two independent premature stop codon alleles show reduced growth and survival, a strong male sex bias, and homozygous females exhibit a progressive oogenesis defect. kdm2aa mutant fish also develop melanomas from early adulthood onwards which are independent from mutations in braf and other common oncogenes and tumour suppressors as revealed by deep whole exome sequencing. In addition to effects on translation and DNA replication gene expression, high-replicate RNA-seq in morphologically normal individuals demonstrates a stable regulatory response of epigenetic modifiers and the specific de-repression of a group of zinc finger genes residing in constitutive heterochromatin. Together our data reveal a complex role for Kdm2aa in regulating normal mRNA levels and carcinogenesis. These findings establish kdm2aa mutants as the first single gene knockout model of melanoma biology.
Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Replicação do DNA , Modelos Animais de Doenças , Epigênese Genética , Exoma , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Masculino , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Peixe-Zebra/embriologiaRESUMO
Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.
Assuntos
Genoma/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Alelos , Animais , Exoma/genética , Feminino , Técnicas de Inativação de Genes , Teste de Complementação Genética , Genômica , Masculino , Anotação de Sequência Molecular , Mutagênese , Mutação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismoRESUMO
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-ß 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system â¼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates.
Assuntos
Evolução Biológica , Cisteína Endopeptidases/genética , Genoma , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Apresentação de Antígeno , Clonagem de Organismos , Cisteína Endopeptidases/classificação , Cisteína Endopeptidases/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/imunologia , Filogenia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Transcriptoma , Peixe-Zebra/classificação , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/imunologiaRESUMO
Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.
Assuntos
Carcinoma Ductal Pancreático/enzimologia , Neoplasias Pancreáticas/enzimologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Anoikis/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endopeptidases , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células U937RESUMO
Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate.
Assuntos
Morfogênese/genética , Polinucleotídeo 5'-Hidroxiquinase/biossíntese , Ribossomos/genética , Proteína Supressora de Tumor p53/genética , Animais , Modelos Animais de Doenças , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Pâncreas/metabolismo , Pâncreas/patologia , Polinucleotídeo 5'-Hidroxiquinase/genética , RNA Ribossômico 28S/genética , Ribossomos/patologia , Peixe-ZebraRESUMO
The initial phases of embryonic development occur in the absence of de novo transcription and are instead controlled by maternally inherited mRNAs and proteins. During this initial period, cell cycles are synchronous and lack gap phases. Following this period of transcriptional silence, zygotic transcription begins, the maternal influence on development starts to decrease, and dramatic changes to the cell cycle take place. Here, we discuss recent work that is shedding light on the maternal to zygotic transition and the interrelated but distinct mechanisms regulating the onset of zygotic transcription and changes to the cell cycle during early embryonic development.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Zigoto/fisiologia , Animais , Apoptose , Ciclo Celular , Replicação do DNA , Drosophila melanogaster/embriologia , Feminino , Fertilização , Gástrula/fisiologia , Redes Reguladoras de Genes , Humanos , Camundongos , Mães , Xenopus laevis/embriologiaRESUMO
Model organisms have played a huge part in the history of studies of human genetic disease, both in identifying disease genes and characterizing their normal and abnormal functions. But is the importance of model organisms diminishing? The direct discovery of disease genes and variants in humans has been revolutionized, first by genome-wide association studies and now by whole-genome sequencing. Not only is it now much easier to directly identify potential disease genes in humans, but the genetic architecture that is being revealed in many cases is hard to replicate in model organisms. Furthermore, disease modelling can be done with increasing effectiveness using human cells. Where does this leave non-human models of disease?
Assuntos
Estudos de Associação Genética/tendências , Genoma Humano , Modelos Animais , Animais , Mapeamento Cromossômico , Humanos , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNARESUMO
The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits.
Assuntos
Diferenciação Celular/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Hematopoese/genética , Animais , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único , Peixe-Zebra/sangueRESUMO
The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.
Assuntos
Ligantes da Sinalização Nodal/metabolismo , Organizadores Embrionários/embriologia , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Técnicas de Silenciamento de Genes , Hibridização In Situ , Microscopia Eletrônica , Morfolinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/metabolismo , Proteínas rab5 de Ligação ao GTP/genéticaRESUMO
BACKGROUND: The CRISPR/Cas9 system is a prokaryotic immune system that infers resistance to foreign genetic material and is a sort of 'adaptive immunity'. It has been adapted to enable high throughput genome editing and has revolutionised the generation of targeted mutations. RESULTS: We have developed a scalable analysis pipeline to identify CRISPR/Cas9 induced mutations in hundreds of samples using next generation sequencing (NGS) of amplicons. We have used this system to investigate the best way to screen mosaic Zebrafish founder individuals for germline transmission of induced mutations. Screening sperm samples from potential founders provides much better information on germline transmission rates and crucially the sequence of the particular insertions/deletions (indels) that will be transmitted. This enables us to combine screening with archiving to create a library of cryopreserved samples carrying known mutations. It also allows us to design efficient genotyping assays, making identifying F1 carriers straightforward. CONCLUSIONS: The methods described will streamline the production of large numbers of knockout alleles in selected genes for phenotypic analysis, complementing existing efforts using random mutagenesis.
Assuntos
Sistemas CRISPR-Cas/genética , Mutação INDEL , Espermatozoides/citologia , Peixe-Zebra/genética , Alelos , Animais , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , RNA Guia de Cinetoplastídeos/genéticaRESUMO
Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans.
Assuntos
Albinismo/genética , Diferenciação Celular/genética , Cromossomos Humanos Par 10 , Códon sem Sentido , Genes Recessivos , Melanócitos/metabolismo , Albinismo/metabolismo , Albinismo/patologia , Animais , Aberrações Cromossômicas , Mapeamento Cromossômico/métodos , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Melanócitos/patologia , Pigmentação/genética , Epitélio Pigmentado da Retina/metabolismo , Peixe-ZebraRESUMO
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.
Assuntos
Distroglicanas/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Nucleotidiltransferases/metabolismo , Animais , Pré-Escolar , Análise Mutacional de DNA/métodos , Distroglicanas/genética , Anormalidades do Olho/patologia , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Estudos de Associação Genética/métodos , Glicosilação , Guanosina Difosfato Manose/metabolismo , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/enzimologia , Nucleotidiltransferases/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
The retinal anterior homeobox (rax) gene encodes a transcription factor necessary for vertebrate eye development. rax transcription is initiated at the end of gastrulation in Xenopus, and is a key part of the regulatory network specifying anterior neural plate and retina. We describe here a Xenopus tropicalis rax mutant, the first mutant analyzed in detail from a reverse genetic screen. As in other vertebrates, this nonsense mutation results in eyeless animals, and is lethal peri-metamorphosis. Tissue normally fated to form retina in these mutants instead forms tissue with characteristics of diencephalon and telencephalon. This implies that a key role of rax, in addition to defining the eye field, is in preventing alternative forebrain identities. Our data highlight that brain and retina regions are not determined by the mid-gastrula stage but are by the neural plate stage. An RNA-Seq analysis and in situ hybridization assays for early gene expression in the mutant revealed that several key eye field transcription factors (e.g. pax6, lhx2 and six6) are not dependent on rax activity through neurulation. However, these analyses identified other genes either up- or down-regulated in mutant presumptive retinal tissue. Two neural patterning genes of particular interest that appear up-regulated in the rax mutant RNA-seq analysis are hesx1 and fezf2. These genes were not previously known to be regulated by rax. The normal function of rax is to partially repress their expression by an indirect mechanism in the presumptive retina region in wildtype embryos, thus accounting for the apparent up-regulation in the rax mutant. Knock-down experiments using antisense morpholino oligonucleotides directed against hesx1 and fezf2 show that failure to repress these two genes contributes to transformation of presumptive retinal tissue into non-retinal forebrain identities in the rax mutant.
Assuntos
Proteínas do Olho/metabolismo , Olho/embriologia , Morfogênese/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais , Primers do DNA/genética , Proteínas do Olho/genética , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Microscopia de Fluorescência , Morfogênese/genética , Mutagênese , Mutação/genética , Prosencéfalo/embriologia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Xenopus/genética , Proteínas de Xenopus/genética , Dedos de Zinco/genéticaRESUMO
BACKGROUND: We present a genome-wide messenger RNA (mRNA) sequencing technique that converts small amounts of RNA from many samples into molecular phenotypes. It encompasses all steps from sample preparation to sequence analysis and is applicable to baseline profiling or perturbation measurements. RESULTS: Multiplex sequencing of transcript 3' ends identifies differential transcript abundance independent of gene annotation. We show that increasing biological replicate number while maintaining the total amount of sequencing identifies more differentially abundant transcripts. CONCLUSIONS: This method can be implemented on polyadenylated RNA from any organism with an annotated reference genome and in any laboratory with access to Illumina sequencing.
Assuntos
Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Tipagem Molecular , RNA Mensageiro/genética , Análise de Sequência de RNA , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Tipagem Molecular/métodos , Mutação , Peixe-ZebraRESUMO
Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker-Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the ß-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.
Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/genética , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Estudos de Coortes , Distroglicanas/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosilação , Homozigoto , Humanos , Lactente , Laminina/metabolismo , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Síndrome de Walker-Warburg/patologia , Peixe-Zebra/genéticaRESUMO
Ensembl gene annotation provides a comprehensive catalog of transcripts aligned to the reference sequence. It relies on publicly available species-specific and orthologous transcripts plus their inferred protein sequence. The accuracy of gene models is improved by increasing the species-specific component that can be cost-effectively achieved using RNA-seq. Two zebrafish gene annotations are presented in Ensembl version 62 built on the Zv9 reference sequence. Firstly, RNA-seq data from five tissues and seven developmental stages were assembled into 25,748 gene models. A 3'-end capture and sequencing protocol was developed to predict the 3' ends of transcripts, and 46.1% of the original models were subsequently refined. Secondly, a standard Ensembl genebuild, incorporating carefully filtered elements from the RNA-seq-only build, followed by a merge with the manually curated VEGA database, produced a comprehensive annotation of 26,152 genes represented by 51,569 transcripts. The RNA-seq-only and the Ensembl/VEGA genebuilds contribute contrasting elements to the final genebuild. The RNA-seq genebuild was used to adjust intron/exon boundaries of orthologous defined models, confirm their expression, and improve 3' untranslated regions. Importantly, the inferred protein alignments within the Ensembl genebuild conferred proof of model contiguity for the RNA-seq models. The zebrafish gene annotation has been enhanced by the incorporation of RNA-seq data and the pipeline will be used for other organisms. Organisms with little species-specific cDNA data will generally benefit the most.
Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Anotação de Sequência Molecular , RNA/química , Peixe-Zebra/genética , Regiões 3' não Traduzidas , Animais , DNA Complementar , Éxons , Genômica/métodos , Íntrons , Masculino , Modelos Genéticos , RNA/genética , Transcrição GênicaRESUMO
Nemaline myopathy is characterized by muscle weakness and the presence of rod-like (nemaline) bodies. The genetic etiology of nemaline myopathy is becoming increasingly understood with mutations in ten genes now known to cause the disease. Despite this, the mechanism by which skeletal muscle weakness occurs remains elusive, with previous studies showing no correlation between the frequency of nemaline bodies and disease severity. To investigate the formation of nemaline bodies and their role in pathogenesis, we generated overexpression and loss-of-function zebrafish models for skeletal muscle α-actin (ACTA1) and nebulin (NEB). We identify three distinct types of nemaline bodies and visualize their formation in vivo, demonstrating these nemaline bodies not only exhibit different subcellular origins, but also have distinct pathological consequences within the skeletal muscle. One subtype is highly dynamic and upon breakdown leads to the accumulation of cytoplasmic actin contributing to muscle weakness. Examination of a Neb-deficient model suggests this mechanism may be common in nemaline myopathy. Another subtype results from a reduction of actin and forms a more stable cytoplasmic body. In contrast, the final type originates at the Z-disk and is associated with myofibrillar disorganization. Analysis of zebrafish and muscle biopsies from ACTA1 nemaline myopathy patients demonstrates that nemaline bodies also possess a different protein signature. In addition, we show that the ACTA1(D286G) mutation causes impaired actin incorporation and localization in the sarcomere. Together these data provide a novel examination of nemaline body origins and dynamics in vivo and identifies pathological changes that correlate with muscle weakness.
Assuntos
Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miopatias da Nemalina/patologia , Miopatias da Nemalina/fisiopatologia , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Citoplasma/metabolismo , Citoplasma/patologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Morfolinos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidade Muscular/patologia , Debilidade Muscular/fisiopatologia , Mutação , Fenótipo , Sarcômeros/metabolismo , Sarcômeros/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND: Nodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action, and how it interacts with the Nodal signalling pathway are still unclear. RESULTS: Using a combination of ChIP-seq and expression analysis we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes. Through comparison of these data with published ChIP-seq data in human, mouse and Xenopus we show that the transcriptional network driven by Smad2 in mesoderm and endoderm is conserved in these vertebrate species. We also show that Smad2 and zebrafish Eomesodermin a (Eomesa) bind common genomic regions proximal to genes involved in mesoderm and endoderm formation, suggesting Eomesa forms a general component of the Smad2 signalling complex in zebrafish. Combinatorial perturbation of Eomesa and Smad2-interacting factor Foxh1 results in loss of both mesoderm and endoderm markers, confirming the role of Eomesa in endoderm formation and its functional interaction with Foxh1 for correct Nodal signalling. Finally, we uncover a novel, role for Eomesa in repressing ectodermal genes in the early blastula. CONCLUSION: Our data demonstrate that evolutionarily conserved developmental functions of Nodal signalling occur through maintenance of the transcriptional network directed by Smad2. This network is modulated by Eomesa in zebrafish which acts to promote mesoderm and endoderm formation in combination with Nodal signalling, whilst Eomesa also opposes ectoderm gene expression. Eomesa therefore regulates the formation of all three germ layers in the early zebrafish embryo.