Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(32): E4601-9, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457945

RESUMO

Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Difosfonatos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanoconjugados/administração & dosagem , Osteólise/tratamento farmacológico , Animais , Difosfonatos/farmacocinética , Doxorrubicina/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pamidronato
2.
Vet Comp Oncol ; 18(4): 675-682, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32246519

RESUMO

There are few published reports of canine rhabdomyosarcomas. In human paediatrics, rhabdomyosarcomas account for 5%-10% of all tumours and >50% of soft tissue sarcomas. They have an aggressive biologic behaviour; most patients develop diffuse metastatic disease. Ezrin, a cytoskeleton linker protein, has been correlated with metastasis in a number of tumours, including rhabdomyosarcomas. The goal of this study was to describe dogs with non-urinary rhabdomyosarcomas including clinical findings, ezrin expression and outcome. Twenty-five dogs with rhabdomyosarcomas were identified from two institutions' databases. Signalment, primary tumour location, cytologic and histologic findings, metastatic sites, treatments, survival time and necropsy results were recorded. Immunohistochemical staining for ezrin expression was performed on archived samples; cellular localization of ezrin was characterized. The mean and median age of all patients was 4.3 and 2 years, respectively. Subcutaneous and retrobulbar/orbital were the most common primary tumour locations. Sixteen dogs had metastatic disease at diagnosis. Three dogs presented with diffuse disease where a primary tumour could not be identified. A round cell tumour was the initial diagnosis in 32% of cases, and 76% of cases required immunohistochemistry to establish the diagnosis. The median survival was 10 days. Twenty-one cases had archived samples available for ezrin staining; all but one was positive and exhibited both membranous and cytoplasmic localization. Rhabdomyosarcomas occur in young dogs, may have a round cell appearance, and exhibit aggressive biologic behaviour. Given ezrin's defined role in metastasis, its observed expression in the tumours in this study suggest its possible role in canine rhabdomyosarcoma's aggressive biologic behaviour.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Rabdomiossarcoma/veterinária , Animais , Antineoplásicos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/mortalidade , Cães , Feminino , Illinois , Imuno-Histoquímica , Masculino , Metástase Neoplásica , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/mortalidade , Rabdomiossarcoma/patologia
3.
Front Oncol ; 7: 42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421158

RESUMO

Costello syndrome (CS) patients suffer from a very high 10% incidence of embryonal rhabdomyosarcoma (ERMS). As tools to discover targeted therapeutic leads, we used a CS patient-derived ERMS cell line (CS242 ERMS) harboring a homozygous p.G12A mutation in HRAS, and a control cell line derived from the same patient comprising non-malignant CS242 fibroblasts with a heterozygous p.G12A HRAS mutation. A library of 2,000 compounds with known pharmacological activities was screened for their effect on CS242 ERMS cell viability. Follow-up testing in a panel of cell lines revealed that various compounds originally developed for other indications were remarkably selective; notably, the phosphodiesterase (PDE) inhibitor zardaverine was at least 1,000-fold more potent in CS242 ERMS than in the patient-matched non-malignant CS242 fibroblasts, other ERMS, or normal fibroblasts. Chronic treatment with zardaverine led to the emergence of resistant cells, consistent with CS242 ERMS comprising a mixed population of cells. Many PDE inhibitors in addition to zardaverine were tested on CS242 ERMS, but almost all had no effect. Interestingly, zardaverine and analogs showed a similar cytotoxicity profile in CS242 ERMS and cervical carcinoma-derived HeLa cells, suggesting a mechanism of action common to both cell types that does not require the presence of an HRAS mutation (HeLa contains wild type HRAS). Two recent studies presented possible mechanistic explanations for the cytotoxicity of zardaverine in HeLa cells. One revealed that zardaverine inhibited a HeLa cell-based screen measuring glucocorticoid receptor (GR) activation; however, using engineered HeLa cells, we ruled out a specific effect of zardaverine on signaling through the GR. The second attributed zardaverine toxicity in HeLa cells to promotion of the interaction of phosphodiesterase 3A and the growth regulatory protein Schlafen 12. We speculate that this work may provide a possible mechanism for zardaverine action in CS242 ERMS, although we have not yet tested this hypothesis. In conclusion, we have identified zardaverine as a potent cytotoxic agent in a CS-derived ERMS cell line and in HeLa. Although we have ruled out some possibilities, the mechanism of action of zardaverine in CS242 ERMS remains to be determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA