Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(7): 1656-1672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36560895

RESUMO

Coral reef fishes are diverse in ecology and behaviour and show remarkable colour variability. Investigating the visual pigment gene (opsin) expression in these fishes makes it possible to associate their visual genotype and phenotype (spectral sensitivities) to visual tasks, such as feeding strategy or conspecific detection. By studying all major damselfish clades (Pomacentridae) and representatives from five other coral reef fish families, we show that the long-wavelength-sensitive (lws) opsin is highly expressed in algivorous and less or not expressed in zooplanktivorous species. Lws is also upregulated in species with orange/red colours (reflectance >520 nm) and expression is highest in orange/red-coloured algivores. Visual models from the perspective of a typical damselfish indicate that sensitivity to longer wavelengths does enhance the ability to detect the red to far-red component of algae and orange/red-coloured conspecifics, possibly enabling social signalling. Character state reconstructions indicate that in the early evolutionary history of damselfishes, there was no lws expression and no orange/red coloration. Omnivory was most often the dominant state. Although herbivory was sometimes dominant, zooplanktivory was never dominant. Sensitivity to long wavelength (increased lws expression) only emerged in association with algivory but never with zooplanktivory. Higher lws expression is also exploited by social signalling in orange/red, which emerged after the transition to algivory. Although the relative timing of traits may deviate by different reconstructions and alternative explanations are possible, our results are consistent with sensory bias whereby social signals evolve as a correlated response to natural selection on sensory system properties in other contexts.


Assuntos
Recifes de Corais , Peixes , Animais , Peixes/genética , Opsinas/genética , Opsinas/metabolismo , Expressão Gênica , Comunicação
2.
J Exp Biol ; 224(Pt 1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33234682

RESUMO

The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.


Assuntos
Recifes de Corais , Retina , Animais , Peixes/genética , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes
3.
J Exp Biol ; 223(Pt 8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327561

RESUMO

Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.


Assuntos
Opsinas , Visão Ocular , Animais , Peixes , Opsinas/genética , Pigmentos da Retina , Opsinas de Bastonetes
4.
J Exp Biol ; 221(Pt 22)2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30158132

RESUMO

Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment, according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on genes encoding opsin, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales, including short time frames due to seasonal variation, or through longer-term evolutionary tuning. There is also evidence for 'on-the-fly' adaptations in adult fish in response to rapidly changing environmental conditions; however, results are contradictory. Here, we investigated the ability of three reef fish species that belong to two ecologically distinct families, yellow-striped cardinalfish (Ostorhinchus cyanosoma), Ambon damselfish (Pomacentrus amboinensis) and lemon damselfish (Pomacentrus moluccensis), to alter opsin gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that changes in opsin expression in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.


Assuntos
Visão de Cores/fisiologia , Proteínas de Peixes/genética , Expressão Gênica/fisiologia , Luz , Opsinas/genética , Perciformes/fisiologia , Animais , Visão de Cores/genética , Recifes de Corais , Ecossistema , Proteínas de Peixes/metabolismo , Opsinas/metabolismo , Perciformes/genética , Especificidade da Espécie , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 112(5): 1493-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25548152

RESUMO

Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.


Assuntos
Evolução Molecular , Peixes/genética , Duplicação Gênica , Opsinas/genética , Sequência de Aminoácidos , Animais , Peixes/classificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
6.
Mol Ecol ; 26(5): 1323-1342, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27997050

RESUMO

Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae.


Assuntos
Proteínas de Peixes/genética , Opsinas/genética , Perciformes/genética , Visão Ocular , Animais , Perciformes/fisiologia , Filogenia
7.
Mol Ecol ; 25(15): 3645-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262029

RESUMO

Phenotypic plasticity plays an important role in adapting the visual capability of many animal species to changing sensory requirements. Such variability may be driven by developmental change or may result from environmental changes in light habitat, thereby improving performance in different photic environments. In this study, we examined inter- and intraspecific plasticity of visual sensitivities in seven damselfish species, part of the species-rich and colourful fish fauna of the Great Barrier Reef in Australia. Our goal was to test whether the visual systems of damselfish were tuned to the prevailing light environment in different habitats and/or other aspects of their lifestyle. More specifically, we compared the opsin gene expression levels from individuals living in different photic habitats. We found that all species expressed rod opsin (RH1) used for dim-light vision, and primarily three cone opsins (SWS1, RH2B and RH2A) used for colour vision. While RH1 levels changed exclusively following a diurnal cycle, cone opsin expression varied with depth in four of the seven species. Estimates of visual pigment performance imply that changes in opsin expression adjust visual sensitivities to the dominant photic regime. However, we also discovered that some species show a more stable opsin expression profile. Further, we found indication that seasonal changes, possibly linked to changes in the photic environment, might also trigger opsin expression. These findings suggest that plasticity in opsin gene expression of damselfish is highly species-specific, possibly due to ecological differences in visual tasks or, alternatively, under phylogenetic constraints.


Assuntos
Opsinas dos Cones/genética , Peixes/genética , Opsinas de Bastonetes/genética , Animais , Austrália , Visão de Cores , Recifes de Corais , Peixes/classificação , Expressão Gênica , Luz , Filogenia
8.
J Exp Biol ; 219(Pt 16): 2545-58, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307489

RESUMO

Animals often change their habitat throughout ontogeny; yet, the triggers for habitat transitions and how these correlate with developmental changes - e.g. physiological, morphological and behavioural - remain largely unknown. Here, we investigated how ontogenetic changes in body coloration and of the visual system relate to habitat transitions in a coral reef fish. Adult dusky dottybacks, Pseudochromis fuscus, are aggressive mimics that change colour to imitate various fishes in their surroundings; however, little is known about the early life stages of this fish. Using a developmental time series in combination with the examination of wild-caught specimens, we revealed that dottybacks change colour twice during development: (i) nearly translucent cryptic pelagic larvae change to a grey camouflage coloration when settling on coral reefs; and (ii) juveniles change to mimic yellow- or brown-coloured fishes when reaching a size capable of consuming juvenile fish prey. Moreover, microspectrophotometric (MSP) and quantitative real-time PCR (qRT-PCR) experiments show developmental changes of the dottyback visual system, including the use of a novel adult-specific visual gene (RH2 opsin). This gene is likely to be co-expressed with other visual pigments to form broad spectral sensitivities that cover the medium-wavelength part of the visible spectrum. Surprisingly, the visual modifications precede changes in habitat and colour, possibly because dottybacks need to first acquire the appropriate visual performance before transitioning into novel life stages.


Assuntos
Mimetismo Biológico , Recifes de Corais , Ecossistema , Peixes/fisiologia , Pigmentação/fisiologia , Vias Visuais/fisiologia , Adaptação Fisiológica , Animais , Austrália , Cor , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica , Modelos Biológicos , Opsinas/genética , Filogenia , Comportamento Predatório , Característica Quantitativa Herdável , Pele/citologia , Fatores de Tempo , Visão Ocular/fisiologia
9.
Ecol Evol ; 14(4): e11186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628922

RESUMO

Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.

10.
Sci Rep ; 9(1): 16459, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712572

RESUMO

Vision plays a major role in the life of most teleosts, and is assumingly well adapted to each species ecology and behaviour. Using a multidisciplinary approach, we scrutinised several aspects of the visual system and ecology of the Great Barrier Reef anemonefish, Amphiprion akindynos, including its orange with white patterning, retinal anatomy and molecular biology, its symbiosis with anemones and sequential hermaphroditism. Amphiprion akindynos possesses spectrally distinct visual pigments and opsins: one rod opsin, RH1 (498 nm), and five cone opsins, SWS1 (370 nm), SWS2B (408 nm), RH2B (498 nm), RH2A (520 nm), and LWS (554 nm). Cones were arranged in a regular mosaic with each single cone surrounded by four double cones. Double cones mainly expressed RH2B (53%) in one member and RH2A (46%) in the other, matching the prevailing light. Single cones expressed SWS1 (89%), which may serve to detect zooplankton, conspecifics and the host anemone. Moreover, a segregated small fraction of single cones coexpressed SWS1 with SWS2B (11%). This novel visual specialisation falls within the region of highest acuity and is suggested to increase the chromatic contrast of Amphiprion akindynos colour patterns, which might improve detection of conspecifics.


Assuntos
Ecologia , Perciformes/fisiologia , Retina/fisiologia , Pigmentos da Retina/fisiologia , Anêmonas-do-Mar/fisiologia , Animais , Opsinas dos Cones/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/metabolismo , Zooplâncton/fisiologia
11.
Science ; 364(6440): 588-592, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31073066

RESUMO

Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.


Assuntos
Evolução Molecular , Proteínas de Peixes/fisiologia , Peixes/fisiologia , Opsinas de Bastonetes/fisiologia , Visão Ocular/fisiologia , Animais , Escuridão , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Peixes/genética , Variação Genética , Genoma , Filogenia , Opsinas de Bastonetes/classificação , Opsinas de Bastonetes/genética , Visão Ocular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA