RESUMO
The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non-targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide-dependent indicating integrin-mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN-amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor-targeting, with minimal clearance by the liver and so enable delivery of tumor-targeted siRNA therapeutics.
RESUMO
Dual specificity phosphatases (DUSPs) play a crucial role in the regulation of intracellular signalling pathways, which in turn influence a broad range of physiological processes. DUSP malfunction is increasingly observed in a broad range of human diseases due to deregulation of key pathways, most notably the MAP kinase (MAPK) cascades. Dual specificity phosphatase 26 (DUSP26) is an atypical DUSP with a range of physiological substrates including the MAPKs. The residues that govern DUSP26 substrate specificity are yet to be determined; however, recent evidence suggests that interactions with a binding partner may be required for DUSP26 catalytic activity. DUSP26 is heavily implicated in cancer where, akin to other DUSPs, it displays both tumour-suppressive and -promoting properties, depending on the context. Here we review DUSP26 by evaluating its transcriptional patterns, protein crystallographic structure and substrate binding, as well as its physiological role(s) and binding partners, its role in human disease and the development of DUSP26 inhibitors.
Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Animais , Fosfatases de Especificidade Dupla/análise , Fosfatases de Especificidade Dupla/genética , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/análise , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Conformação Proteica , Mapas de Interação de Proteínas , Especificidade por Substrato , Ativação TranscricionalRESUMO
Receptor-like protein tyrosine phosphatases represent a large protein family related to cell adhesion molecules, with diverse roles throughout neural development in vertebrates and invertebrates. This review focuses on their roles in axon growth, guidance and repair, as well as more recent findings demonstrating their key roles in pre-synaptic and post-synaptic maturation and function. These enzymes have been linked to memory and neuropsychiatric defects in loss-of-function rodent models, highlighting their potential as future drug targets.
Assuntos
Axônios/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sinapses/metabolismo , Animais , Humanos , Invertebrados/metabolismo , Regeneração Nervosa , Vertebrados/metabolismoRESUMO
Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.
Assuntos
Antineoplásicos/farmacologia , Hipoglicemiantes/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Compostos de Vanádio/farmacologia , Animais , Antineoplásicos/química , Humanos , Hipoglicemiantes/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais , Compostos de Vanádio/químicaRESUMO
Protein tyrosine phosphatases (PTPs) constitute a family of key homeostatic regulators, with wide implications on physiology and disease. Recent findings have unveiled that the biological activity of PTPs goes beyond the dephosphorylation of phospho-proteins to shut down protein tyrosine kinase-driven signaling cascades. Substrates dephosphorylated by clinically relevant PTPs extend to phospholipids and phosphorylated carbohydrates as well. In addition, non-catalytic functions are also used by PTPs to regulate essential cellular functions. Consequently, PTPs have emerged as novel potential therapeutic targets for human diseases, including cancer predispositions, myopathies and neuropathies. In this review, we highlight recent advances on the multifaceted role of lipid-phosphatase PTPs in human pathology, with an emphasis on hereditary diseases. The involved PTP regulatory networks and PTP modulatory strategies with potential therapeutic application are discussed.
Assuntos
Doenças Musculares/enzimologia , Neoplasias/enzimologia , Doenças do Sistema Nervoso/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Fosfolipídeos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/química , Alinhamento de Sequência , Transdução de Sinais , Especificidade por SubstratoRESUMO
During spinal cord development the proliferation, migration and survival of neural progenitors and precursors is tightly controlled, generating the fine spatial organisation of the cord. In order to understand better the control of these processes, we have examined the function of an orphan receptor protein tyrosine phosphatase (RPTP) PTPγ, in the developing chick spinal cord. Widespread expression of PTPγ occurs post-embryonic day 3 in the early cord and is consistent with a potential role in either neurogenesis or neuronal maturation. Using gain-of-function and loss-of-function approaches in ovo, we show that PTPγ perturbation significantly reduces progenitor proliferation rates and neuronal precursor numbers, resulting in hypoplasia of the neuroepithelium. PTPγ gain-of-function causes widespread suppression of Wnt/ß-catenin-driven TCF signalling. One potential target of PTPγ may therefore be ß-catenin itself, since PTPγ can dephosphorylate it in vitro, but alternative targets are also likely. PTPγ loss-of-function is not sufficient to alter TCF signalling. Instead, loss-of-function leads to increased apoptosis and defective cell-cell adhesion in progenitors and precursors. Furthermore, motor neuron precursor migration is specifically defective. PTPγ therefore regulates neurogenesis during a window of spinal cord development, with molecular targets most likely related to Wnt/ß-catenin signalling, cell survival and cell adhesion.
Assuntos
Neurogênese/fisiologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/embriologia , Medula Espinal/enzimologia , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Embrião de Galinha , Eletroporação , Immunoblotting , Hibridização In Situ , Neurônios Motores/citologia , Neurônios Motores/enzimologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismoRESUMO
Neuroblastoma (NB) is a heterogeneous cancer of the sympathetic nervous system, which accounts for 7-10% of paediatric malignancies worldwide. Due to the lack of targetable molecular aberrations in NB, most treatment options remain relatively nonspecific. Here, we investigated the therapeutic potential of BCI, an inhibitor of DUSP1 and DUSP6, in cultured NB cells. BCI was cytotoxic in a range of NB cell lines and induced a short-lived activation of the AKT and stress-inducible MAP kinases, although ERK phosphorylation was unaffected. Furthermore, a phosphoproteomic screen identified significant upregulation of JNK signalling components and suppression in mTOR and R6K signalling. To assess the specificity of BCI, CRISPR-Cas9 was employed to introduce insertions and deletions in the DUSP1 and DUSP6 genes. Surprisingly, BCI remained fully cytotoxic in NB cells with complete loss of DUSP6 and partial depletion of DUSP1, suggesting that BCI exerts cytotoxicity in NB cells through a complex mechanism that is unrelated to these phosphatases. Overall, these data highlight the risk of using an inhibitor such as BCI as supposedly specific DUSP1/6, without understanding its full range of targets in cancer cells.
Assuntos
Antineoplásicos , Fosfatase 1 de Especificidade Dupla , Fosfatase 6 de Especificidade Dupla , Neuroblastoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/genética , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Fosforilação , Transdução de SinaisRESUMO
Signaling through receptor protein tyrosine phosphatases (RPTPs) can influence diverse processes, including axon development, lymphocyte activation, and cell motility. The molecular regulation of these enzymes, however, is still poorly understood. In particular, it is not known if, or how, the dimerization state of RPTPs is related to the binding of extracellular ligands. Protein tyrosine phosphatase sigma (PTPsigma) is an RPTP with major isoforms that differ in their complements of fibronectin type III domains and in their ligand-binding specificities. In this study, we show that PTPsigma forms homodimers in the cell, interacting at least in part through the transmembrane region. Using this knowledge, we provide the first evidence that PTPsigma ectodomains must be presented as dimers in order to bind heterophilic ligands. We also provide evidence of how alternative use of fibronectin type III domain complements in two major isoforms of PTPsigma can alter the ligand binding specificities of PTPsigma ectodomains. The data suggest that the alternative domains function largely to change the rotational conformations of the amino-terminal ligand binding sites of the ectodomain dimers, thus imparting novel ligand binding properties. These findings have important implications for our understanding of how heterophilic ligands interact with, and potentially regulate, RPTPs.
Assuntos
Proteínas Aviárias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Linhagem Celular , Embrião de Galinha , Galinhas , Cisteína/metabolismo , Dimerização , Deleção de Genes , Humanos , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes de Fusão/metabolismo , Sensibilidade e Especificidade , Homologia de Sequência de Aminoácidos , TransfecçãoRESUMO
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Assuntos
Inativação Gênica/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Neuroblastoma/genética , Neuroblastoma/patologia , Neurogênese/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/genética , Tretinoína/efeitos adversos , Tretinoína/farmacologiaRESUMO
Oxidovanadium complexes with organic ligands are well known to have cytotoxic or differentiating capabilities against a range of cancer cell types. Their limited use in clinical testing though has resulted largely from uncertainties about the long-term toxicities of such complexes, due in part to the speciation to vanadate ions in the circulation. We hypothesised that more highly stable complexes, delivered using liposomes, may provide improved opportunities for oxidovanadium applications against cancer. In this study we sourced specifically hydrophobic forms of oxidovanadium complexes with the explicit aim of demonstrating liposomal encapsulation, bioavailability in cultured neuroblastoma cells, and effective cytotoxic or differentiating activity. Our data show that four ethanol-solubilised complexes with amine bisphenol, aminoalcohol bisphenol or salan ligands are equally or more effective than a previously used complex bis(maltolato)oxovanadium(V) in neuroblastoma cell lines. Moreover, we show that one of these complexes can be stably incorporated into cationic liposomes where it retains very good bioavailability, apparently low speciation and enhanced efficacy compared to ethanol delivery. This study provides the first proof-of-concept that stable, hydrophobic oxidovanadium complexes retain excellent cellular activity when delivered effectively to cancer cells with nanotechnology. This offers the improved prospect of applying oxidovanadium-based drugs in vivo with increased stability and reduced off-target toxicity.
Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos , Neuroblastoma/tratamento farmacológico , Vanadatos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologiaRESUMO
Retinoid treatment is employed during residual disease treatment in neuroblastoma, where the aim is to induce neural differentiation or death in tumour cells. However, although therapeutically effective, retinoids have only modest benefits and suffer from poor pharmacokinetic properties. In vivo, retinoids induce CYP26 enzyme production in the liver, enhancing their own rapid metabolic clearance, while retinoid resistance in tumour cells themselves is considered to be due in part to increased CYP26 production. Retinoic acid metabolism blocking agents (RAMBAs), which inhibit CYP26 enzymes, can improve retinoic acid (RA) pharmacokinetics in pre-clinical neuroblastoma models. Here, we demonstrate that in cultured neuroblastoma tumour cells, RAMBAs enhance RA action as seen by morphological differentiation, AKT signalling and suppression of MYCN protein. Although active as retinoid enhancers, these RAMBAs are highly hydrophobic and their effective delivery in humans will be very challenging. Here, we demonstrate that such RAMBAs can be loaded efficiently into cationic liposomal particles, where the RAMBAs achieve good bioavailability and activity in cultured tumour cells. This demonstrates the efficacy of RAMBAs in enhancing retinoid signalling in neuroblastoma cells and shows for the first time that liposomal delivery of hydrophobic RAMBAs is a viable approach, providing novel opportunities for their delivery and application in humans.
Assuntos
Azóis/farmacologia , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/agonistas , Tretinoína/metabolismo , Azóis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Neuroblastoma , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Transdução de SinaisRESUMO
Neural crest stem/progenitor cells (NCSCs) populate a variety of tissues, and their dysregulation is implicated in several human diseases including craniosynostosis and neuroblastoma. We hypothesised that small molecules that inhibit NCSC induction or differentiation may represent potential therapeutically relevant drugs in these disorders. We screened 640 FDA-approved compounds currently in clinical use for other conditions to identify those which disrupt development of NCSC-derived skeletal elements that form the zebrafish jaw. In the primary screen, we used heterozygous transgenic sox10:gfp zebrafish to directly visualise NCSC-derived jaw cartilage. We noted partial toxicity of this transgene in relation to jaw patterning, suggesting that our primary screen was sensitised for NCSC defects, and we confirmed 10 novel, 4 previously reported, and 2 functional analogue drug hits in wild-type embryos. Of these drugs, 9/14 and 7/14, respectively, are known to target pathways implicated in osteoarthritis pathogenesis or to cause reduced bone mineral density/increased fracture risk as side effects in patients treated for other conditions, suggesting that our screen enriched for pathways targeting skeletal tissue homeostasis. We selected one drug that inhibited NCSC induction and one drug that inhibits bone mineralisation for further detailed analyses which reflect our initial hypotheses. These drugs were leflunomide and cyclosporin A, respectively, and their functional analogues, teriflunomide and FK506 (tacrolimus). We identified their critical developmental windows of activity, showing that the severity of defects observed related to the timing, duration, and dose of treatment. While leflunomide has previously been shown to inhibit NCSC induction, we demonstrate additional later roles in cartilage remodelling. Both drugs altered expression of extracellular matrix metalloproteinases. As proof-of-concept, we also tested drug treatment of disease-relevant mammalian cells. While leflunomide treatment inhibited the viability of several human NCSC-derived neuroblastoma cell lines coincident with altered expression of genes involved in ribosome biogenesis and transcription, FK506 enhanced murine calvarial osteoblast differentiation and prevented fusion of the coronal suture in calvarial explants taken from Crouzon syndrome mice.
RESUMO
Some 40-odd genes in mammals encode phosphotyrosine-specific, 'classical' protein tyrosine phosphatases. The generation of animal model systems and the study of various human disease states have begun to elucidate the important and diverse roles of protein tyrosine phosphatases in cellular signalling pathways, development and disease. Here, we provide an overview of those findings from mice and men, and indicate several novel approaches that are now being exploited to further our knowledge of this fascinating enzyme family.
Assuntos
Modelos Animais de Doenças , Doença/etiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia , Animais , Humanos , Sistema Imunitário/enzimologia , Camundongos , Oncogenes , Fosforilação , Ratos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Tirosina/metabolismoRESUMO
RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues.
Assuntos
Proteínas Aviárias , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Agrina/genética , Agrina/metabolismo , Animais , Membrana Basal/metabolismo , Sítios de Ligação/fisiologia , Embrião de Galinha , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo XVIII , Endostatinas , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Heparina/metabolismo , Isoenzimas/metabolismo , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Retina/embriologia , Retina/metabolismo , Homologia de Sequência de AminoácidosRESUMO
Receptor-type protein tyrosine phosphatases (RPTPs) are required for appropriate growth of axons during nervous system development in Drosophila. In the vertebrate, type IIa RPTPs [protein tyrosine phosphatase (PTP)-delta, PTP-sigma, and LAR (leukocyte common-antigen-related)] and the type III RPTP, PTP receptor type O (PTPRO), have been implicated in the regulation of axon growth, but their roles in developmental axon guidance are unclear. PTPRO, PTP-delta, and PTP-sigma are each expressed in chick motor neurons during the period of axonogenesis. To examine potential roles of RPTPs in axon growth and guidance in vivo, we used double-stranded RNA (dsRNA) interference combined with in ovo electroporation to knock down RPTP expression levels in the embryonic chick lumbar spinal cord. Although most branches of the developing limb nerves appeared grossly normal, a dorsal nerve identified as the anterior iliotibialis was clearly affected by dsRNA knock-down of RPTPs. In experimental embryos treated with dsRNA targeting PTP-delta, PTP-sigma, or PTPRO, this nerve showed abnormal fasciculation, was reduced in size, or was missing entirely; interference with PTPRO produced the most severe phenotypes. Control embryos electroporated with vehicle, or with dsRNA targeting choline acetyltransferase or axonin-1, did not exhibit this phenotype. Surprisingly, embryos electroporated with dsRNA targeting PTP-delta together with PTPRO, or all three RPTPs combined, had less severe phenotypes than embryos treated with PTPRO alone. This result suggests that competition between type IIa and type III RPTPs can regulate motor axon outgrowth, consistent with findings in Drosophila. Our results indicate that RPTPs, and especially PTPRO, are required for axon growth and guidance in the developing vertebrate limb.
Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Receptores de Superfície Celular/fisiologia , Aminoácidos/metabolismo , Animais , Proteínas Aviárias , Western Blotting/métodos , Moléculas de Adesão Celular Neuronais/metabolismo , Embrião de Galinha , Contactina 2 , Drosophila , Eletroporação/métodos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ/métodos , Fenótipo , Proteínas Tirosina Fosfatases/genética , RNA de Cadeia Dupla/farmacologia , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/citologia , Medula Espinal/embriologia , Proteínas de XenopusRESUMO
Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-sigma has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-sigma are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-sigma has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-sigma. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-sigma in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-sigma ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-sigma-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-sigma ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-sigma and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-sigma.
Assuntos
Axônios/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião de Galinha , Lactoferrina/metabolismo , Ligantes , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Peptídeos/metabolismo , Ligação Proteica , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , NucleolinaRESUMO
A cornerstone of many cell-signalling events rests on reversible phosphorylation of tyrosine residues on proteins. The reversibility relies on the coordinated actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), both of which exist as large protein families. This review focuses on the rapidly evolving field of the PTPs. We now know that rather than simply scavenging phosphotyrosine, the PTPs specifically regulate a wide range of signalling pathways. To illustrate this and to highlight current areas of agreement and contention in the field, this review will present our understanding of PTP action in selected areas and will present current knowledge surrounding the regulatory mechanisms that control PTP enzymes themselves. It will be seen that PTPs control diverse processes such as focal adhesion dynamics, cell-cell adhesion and insulin signalling, and their own actions are in turn regulated by dimerisation, phosphorylation and reversible oxidation.
Assuntos
Fenômenos Fisiológicos Celulares , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Adesão Celular , Dimerização , Humanos , Insulina/metabolismo , Ligantes , Oxirredução , Proteínas Tirosina Quinases/metabolismoRESUMO
In a wide range of neuroblastoma-derived lines oxovanadium compounds such as bis(maltolato)oxovanadium(IV) (BMOV) are cytotoxic. This is not explained by oxidative stress or inhibition of ion channels. Genotoxicity is unlikely given that a p53 response is absent and p53-mutant lines are also sensitive. Cytotoxicity is inhibited by N-acetyl cysteine and glutathione ester, indicating that BMOV action is sensitive to cytoplasmic redox and thiol status. Significantly, combining BMOV with glutathione synthesis inhibition greatly enhances BMOV-induced cell death. This combination treatment triggers high AKT pathway activation, highlighting the potential functional importance of PTP inhibition by BMOV. AKT activation itself, however, is not required for cytotoxicity. Oxovanadium compounds may thus represent novel leads as p53-independent therapeutics for neuroblastoma.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Butionina Sulfoximina/farmacologia , Neuroblastoma/tratamento farmacológico , Pironas/farmacologia , Vanadatos/farmacologia , Animais , Butionina Sulfoximina/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Neuroblastoma/metabolismo , Oxirredução , Pironas/administração & dosagem , Transdução de Sinais , Transfecção , Vanadatos/administração & dosagemRESUMO
Receptor-type protein tyrosine phosphatases (RPTPs) have been implicated as direct or indirect regulators of neurotrophin receptors (TRKs). It remains less clear if and how such RPTPs might regulate TRK proteins in vivo during development. Here we present a comparative expression profile of RPTP genes and Trk genes during early stages of murine, dorsal root ganglion maturation. We find little if any specific, temporal mRNA co-regulation between individual RPTP and Ntrk genes between E12.5 and E14.5. Moreover, a double fluorescent in-situ hybridization and immunofluorescence study of seven Rptp genes with Ntrks revealed widespread co-expression of RPTPs in individual neurons, but no tight correlation with Trk expression profiles. No Rptp is expressed in 100% of Ntrk1-expressing neurons, whereas at least 6 RPTPs are expressed in 100% of Ntrk2- and Ntrk3-expressing neurons. An exception is Ptpro, which showed very selective expression. Short hairpin RNA suppression of Ptprf, Ptprs or Ptpro in primary, E13.5 DRG neurons did not alter TRK signalling. We therefore propose that TRK signalling may not be simply dependent on rate-limiting regulation by individual RPTP subtypes during sensory neuron development. Instead, TRK signalling has the potential to be buffered by concurrent inputs from several RPTPs in individual neurons.
Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Tirosina Fosfatases/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Fator de Crescimento Neural/genética , Proteína Regulatória Associada a mTOR , Transdução de Sinais/genética , TransfecçãoRESUMO
Receptor protein tyrosine phosphatase sigma (RPTPσ) regulates neuronal extension and acts as a presynaptic nexus for multiple protein and proteoglycan interactions during synaptogenesis. Unknown mechanisms govern the shift in RPTPσ function, from outgrowth promotion to synaptic organization. Here, we report crystallographic, electron microscopic and small-angle X-ray scattering analyses, which reveal sufficient inter-domain flexibility in the RPTPσ extracellular region for interaction with both cis (same cell) and trans (opposite cell) ligands. Crystal structures of RPTPσ bound to its postsynaptic ligand TrkC detail an interaction surface partially overlapping the glycosaminoglycan-binding site. Accordingly, heparan sulphate and heparin oligomers compete with TrkC for RPTPσ binding in vitro and disrupt TrkC-dependent synaptic differentiation in neuronal co-culture assays. We propose that transient RPTPσ ectodomain emergence from the presynaptic proteoglycan layer allows capture by TrkC to form a trans-synaptic complex, the consequent reduction in RPTPσ flexibility potentiating interactions with additional ligands to orchestrate excitatory synapse formation.