Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(24): 245701, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956961

RESUMO

Shape memory strain glasses are frustrated ferroelastic materials with glasslike slow relaxation and nanodomains. It is possible to change a NiCoMnIn Heusler alloy from a martensitically transforming alloy to a nontransforming strain glass by annealing, but minimal differences are evident in the short- or long-range order above the transition temperature-although there is a structural relaxation and a 0.18% lattice expansion in the annealed sample. Using neutron scattering we find glasslike phonon damping in the strain glass but not the transforming alloy at temperatures well above the transition. Damping occurs in the mode with displacements matching the martensitic transformation. With support from first-principles calculations, we argue that the strain glass originates not with transformation strain pinning but with a disruption of the underlying electronic instability when disorder resonance states cross the Fermi level.

2.
Appl Radiat Isot ; 194: 110712, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764223

RESUMO

Accurately counting analog events requires constructing an electronics chain that produces one count for each input pulse. In this work we review the use of Nuclear Instrumentation Module electronic units for counting neutron capture events in a 3He tube. We identify two unique types of false trigger events in a leading-edge discriminator and show how a dual timer module can be used to produce a veto window to exclude these events. We use the constructed electronics chain to build an apparatus to measure neutron pulses from a 252Cf neutron source. We compare the measurements with a Monte Carlo N-Particle (MCNP) model to determine the activity of the neutron source. Furthermore, by making additional measurements with borated polyethylene attenuators between the source and detector, we are able to determine the boron concentration of the polyethylene. This technique provides accurate determination of the source activity to a precision of 2.8% at the k = 1 level. The method used is simple, inexpensive, and requires no additional calibrated instruments.

3.
Nat Commun ; 10(1): 1928, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028271

RESUMO

Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic lattice dynamics underlying their low thermal conductivities. An ideal material for thermoelectric efficiency is the phonon glass-electron crystal, which drives research on strategies to scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity can potentially do both, even in perfect crystals, and simulations suggest that PbSe is anharmonic enough to support intrinsic localized modes that halt transport. Here, we experimentally observe high-temperature localization in PbSe using neutron scattering but find that localization is not limited to isolated modes - zero group velocity develops for a significant section of the transverse optic phonon on heating above a transition in the anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our study shows how nonlinear physics beyond conventional anharmonic perturbations can fundamentally alter vibrational transport properties.

4.
Nat Commun ; 9(1): 1823, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739934

RESUMO

Controlling the thermal energy of lattice vibrations separately from electrons is vital to many applications including electronic devices and thermoelectric energy conversion. To remove heat without shorting electrical connections, heat must be carried in the lattice of electrical insulators. Phonons are limited to the speed of sound, which, compared to the speed of electronic processes, puts a fundamental constraint on thermal management. Here we report a supersonic channel for the propagation of lattice energy in the technologically promising piezoelectric mineral fresnoite (Ba2TiSi2O8) using neutron scattering. Lattice energy propagates 2.8-4.3 times the speed of sound in the form of phasons, which are caused by an incommensurate modulation in the flexible framework structure of fresnoite. The phasons enhance the thermal conductivity by 20% at room temperature and carry lattice-energy signals at speeds beyond the limits of phonons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA