RESUMO
PURPOSE: To determine whether the spatial scale and magnetic susceptibility of microstructure can be evaluated robustly from the decay of gradient-echo and spin-echo signals. THEORY AND METHODS: Gradient-echo and spin-echo images were acquired from suspensions of spherical polystyrene microbeads of 10, 20, and 40 µm nominal diameter. The sizes of the beads and their magnetic susceptibility relative to the medium were estimated from the signal decay curves, using a lookup table generated from Monte Carlo simulations and an analytic model based on the Gaussian phase approximation. RESULTS: Fitting Monte Carlo predictions to spin-echo data yielded acceptable estimates of microstructural parameters for the 20 and 40 µm microbeads. Using gradient-echo data, the Monte Carlo lookup table provided satisfactory parameter estimates for the 20 µm beads but unstable results for the diameter of the largest beads. Neither spin-echo nor gradient-echo data allowed accurate parameter estimation for the smallest beads. The analytic model performed poorly over all bead sizes. CONCLUSIONS: Microstructural sources of magnetic susceptibility produce distinctive non-exponential signatures in the decay of gradient-echo and spin-echo signals. However, inverting the problem to extract microstructural parameters from the signals is nontrivial and, in certain regimes, ill-conditioned. For microstructure with small characteristic length scales, parameter estimation is hampered by the difficulty of acquiring accurate data at very short echo times. For microstructure with large characteristic lengths, the gradient-echo signal approaches the static-dephasing regime, where it becomes insensitive to size. Applicability of the analytic model was further limited by failure of the Gaussian phase approximation for all but the smallest beads.
Assuntos
Algoritmos , Imagem Ecoplanar/métodos , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Aumento da Imagem/métodos , Método de Monte Carlo , Simulação por ComputadorRESUMO
Iron deficits have been reported as a risk factor for psychotic spectrum disorders (PSD). However, examinations of brain iron in PSD remain limited. The current study employed quantitative MRI to examine iron content in several iron-rich subcortical structures in 49 young adult individuals with PSD (15 schizophrenia, 17 schizoaffective disorder, and 17 bipolar disorder with psychotic features) compared with 35 age-matched healthy controls (HC). A parametric approach based on a two-pool magnetization transfer model was applied to estimate longitudinal relaxation rate (R1), which reflects both iron and myelin, and macromolecular proton fraction (MPF), which is specific to myelin. To describe iron content, a synthetic effective transverse relaxation rate (R2*) was modeled using a linear fitting of R1 and MPF. PSD patients compared to HC showed significantly reduced R1 and synthetic R2* across examined regions including the pallidum, ventral diencephalon, thalamus, and putamen areas. This finding was primarily driven by decreases in the subgroup with schizophrenia, followed by schizoaffective disorder. No significant group differences were noted for MPF between PSD and HC while for regional volume, significant reductions in patients were only observed in bilateral caudate, suggesting that R1 and synthetic R2* reductions in schizophrenia and schizoaffective patients likely reflect iron deficits that either occur independently or precede structural and myelin changes. Subcortical R1 and synthetic R2* were also found to be inversely related to positive symptoms within the PSD group and to schizotypal traits across the whole sample. These findings that decreased iron in subcortical regions are associated with PSD risk and symptomatology suggest that brain iron deficiencies may play a role in PSD pathology and warrant further study.
Assuntos
Ferro , Transtornos Psicóticos , Adulto Jovem , Humanos , Transtornos Psicóticos/patologia , Gânglios da Base/patologia , Encéfalo/patologia , Tálamo , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE: To develop a simultaneous dual-slab three-dimensional gradient-echo spectroscopic imaging (GSI) technique with frequency drift compensation for rapid (<6 min) bilateral measurement of fatty acid composition (FAC) in mammary adipose tissue. METHODS: A bilateral GSI sequence was developed using a simultaneous dual-slab excitation followed by 128 monopolar echoes. A short train of navigator echoes without phase or partition encoding was included at the beginning of each pulse repetition time period to correct for frequency variation caused by respiration and heating of the cryostat. Voxel-wise spectral fitting was applied to measure the areas of the lipid spectral peaks to estimate the number of double-bond (ndb), number of methylene-interrupted double-bond (nmidb), and chain length (cl). The proposed method was tested in an oil phantom and 10 postmenopausal women to assess the influence of the frequency variation on FAC estimation. RESULTS: The frequency drift observed over 5:27 min during the phantom scan was about 10 Hz. Phase correction based on the navigator reduced the median error of ndb, nmidb, and cl from 9.7%, 17.6%, and 3.2% to 2.1%, 9.5%, and 2.8%, respectively. The in vivo data showed a mean ± standard deviation frequency drift of 17.4 ± 2.5 Hz, with ripples at 0.3 ± 0.1 Hz. Our reconstruction algorithm successfully separated signals from the left and right breasts with negligible residual aliasing. Phase correction reduced the interquartile range within each subject's adipose tissue of ndb, nmidb, and cl by 18.4 ± 10.6%, 18.5 ± 13.9%, and 18.4 ± 10.6%, respectively. CONCLUSION: This study shows the feasibility of obtaining bilateral spectroscopic imaging data in the breast and that incorporation of a frequency navigator improves the estimation of FAC.
Assuntos
Ácidos Graxos , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Mama/diagnóstico por imagem , Feminino , Humanos , Imagens de FantasmasRESUMO
OBJECTIVE: The aim of this study was to evaluate agreement of measured thoracic aortic caliber in patients with aortic disease, using electrocardiographically-(ECG) and pulse-gated breath-hold noncontrast balanced steady-state free precession MRA (ECG-MRA, P-MRA) at 1.5 T, compared with ECG-gated computed tomographic angiography (CTA). METHODS: Thirty-one patients underwent ECG-MRA, P-MRA, and CTA. Two readers independently measured aortic caliber in 7 segments, with agreement between techniques and readers evaluated. Image quality was qualitatively assessed. RESULTS: There was overall excellent agreement among ECG-MRA, P-MRA, and CTA for measured aortic caliber (Lin's concordance correlation coefficient ≥0.94, all comparisons); however, lower concordance was noted at the annulus (Lin's concordance correlation coefficient <0.6) at segmental assessment. There was excellent interreader agreement for aortic caliber for all 3 techniques (intraclass correlation coefficient >0.94). Image quality was poorer for both MRA techniques compared with CTA, particularly at the aortic root. CONCLUSIONS: Electrocardiographically-gated MRA and P-MRA at 1.5 T achieve comparable thoracic aortic measurements to gated CTA in clinical patients, despite inferior image quality.
Assuntos
Doenças da Aorta/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Eletrocardiografia/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/fisiopatologia , Doenças da Aorta/fisiopatologia , Suspensão da Respiração , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto JovemRESUMO
Purpose To demonstrate the feasibility of the use of a rapid, noninvasive, in vivo imaging method to measure fatty acid fractions of breast adipose tissue during diagnostic breast magnetic resonance (MR) examinations and to investigate associations between fatty acid fractions in breast adipose tissue and breast cancer status by using this method. Materials and Methods The institutional review board approved this retrospective HIPAA-compliant study and informed consent was waived. Between July 2013 and September 2014, multiple-echo three-dimensional gradient-echo data were acquired for 89 women. Spectra were generated and used to estimate fractions of monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), and saturated fatty acid (SFA) in the breast adipose tissue. Analysis of covariance and exact Mann-Whitney tests were used to compare groups and the Spearman rank correlation coefficient was used to characterize the association of each imaging measure with each attribute. Results For postmenopausal women, MUFA was lower (0.38 ± 0.06 vs 0.46 ± 0.10; P < .05) and SFA was higher (0.31 ± 0.07 vs 0.19 ± 0.11; P < .05) for women with invasive ductal carcinoma than for those with benign tissue. No correlation was found between body mass index (BMI) and fatty acid fractions in breast adipose tissue. In women with benign tissue, postmenopausal women had a higher PUFA (0.35 ± 0.06 vs 0.27 ± 0.05; P < .01) and lower SFA (0.19 ± 0.11 vs 0.30 ± 0.12; P < .05) than premenopausal women. Conclusion There is a possible link between the presence of invasive ductal carcinoma and fatty acid fractions in breast adipose tissue for postmenopausal women in whom BMI values are not correlated with the fatty acid fractions. (©) RSNA, 2016 Online supplemental material is available for this article.
Assuntos
Tecido Adiposo/química , Doenças Mamárias/diagnóstico por imagem , Doenças Mamárias/metabolismo , Ácidos Graxos/metabolismo , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
PURPOSE: R2* (1/T2*) and single echo R2 (1/T2) have been calibrated to liver iron concentration (LIC) in patients with thalassemia and transfusion-dependent sickle cell disease at 1.5T. The R2*-LIC relationship is linear, whereas that of R2 is curvilinear. However, the increasing popularity of high-field scanners requires generalizing these relationships to higher field strengths. In this study, we tested the hypothesis that numerical simulation can accurately determine the field dependence of iron-mediated transverse relaxation rates. METHODS: We previously replicated the calibration curves between R2 and R2* and iron at 1.5T using Monte Carlo models incorporating realistic liver structure, iron deposit susceptibility, and proton mobility. In this paper, we extend our model to predict relaxivity-iron calibrations at higher field strengths. Predictions were validated by measuring R2 and R2* at 1.5T and 3T in six ß-thalassemia major patients. RESULTS: Predicted R2* increased twofold at 3T from 1.5T, whereas R2 increased by a factor of 1.47. Patient data exhibited a coefficient of variation of 3.6% and 7.2%, respectively, to the best-fit simulated data. Simulations over the range 0.25T-7T showed R2* increasing linearly with field strength, whereas R2 exhibited a concave-downward relationship. CONCLUSION: A model-based approach predicts alterations in relaxivity-iron calibrations with field strength without repeating imaging studies. The model may generalize to alternative pulse sequences and tissue iron distribution.
Assuntos
Sobrecarga de Ferro/fisiopatologia , Ferro/análise , Fígado/química , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Calibragem , Humanos , Fígado/fisiologia , Imageamento por Ressonância Magnética/estatística & dados numéricos , Método de Monte CarloRESUMO
Concentration of the neuronal marker, N-acetylaspartate (NAA), a quantitative metric for the health and density of neurons, is currently obtained by integration of the manually defined peak in whole-head proton ((1) H)-MRS. Our goal was to develop a full spectral modeling approach for the automatic estimation of the whole-brain NAA concentration (WBNAA) and to compare the performance of this approach with a manual frequency-range peak integration approach previously employed. MRI and whole-head (1) H-MRS from 18 healthy young adults were examined. Non-localized, whole-head (1) H-MRS obtained at 3 T yielded the NAA peak area through both manually defined frequency-range integration and the new, full spectral simulation. The NAA peak area was converted into an absolute amount with phantom replacement and normalized for brain volume (segmented from T1 -weighted MRI) to yield WBNAA. A paired-sample t test was used to compare the means of the WBNAA paradigms and a likelihood ratio test used to compare their coefficients of variation. While the between-subject WBNAA means were nearly identical (12.8 ± 2.5 mm for integration, 12.8 ± 1.4 mm for spectral modeling), the latter's standard deviation was significantly smaller (by ~50%, p = 0.026). The within-subject variability was 11.7% (±1.3 mm) for integration versus 7.0% (±0.8 mm) for spectral modeling, i.e., a 40% improvement. The (quantifiable) quality of the modeling approach was high, as reflected by Cramer-Rao lower bounds below 0.1% and vanishingly small (experimental - fitted) residuals. Modeling of the whole-head (1) H-MRS increases WBNAA quantification reliability by reducing its variability, its susceptibility to operator bias and baseline roll, and by providing quality-control feedback. Together, these enhance the usefulness of the technique for monitoring the diffuse progression and treatment response of neurological disorders.
Assuntos
Ácido Aspártico/análogos & derivados , Química Encefálica , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Ácido Aspártico/análise , Automação , Encéfalo/anatomia & histologia , Simulação por Computador , Feminino , Humanos , Masculino , Neurônios/metabolismo , Tamanho do Órgão , Imagens de Fantasmas , Espectroscopia de Prótons por Ressonância Magnética/instrumentação , Prótons , Valores de ReferênciaRESUMO
PURPOSE: To characterize the uptake and elimination of ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO) agent, in bone marrow of healthy human subjects. MATERIALS AND METHODS: Four men and two postmenopausal women, aged 22 to 57 years, were prospectively included. Simultaneous fat, water, and T2* mapping of the proximal femora was performed at 1.5 Tesla using a three-dimensional multiple gradient echo sequence. After baseline imaging, ferumoxytol (Feraheme/Rienso) was injected intravenously at a dose of 5 mg Fe/kg body weight. Imaging was repeated at 3 days, 1 month, 3 months, and 5 months after administration. RESULTS: Imaging at 3 days revealed large increases in R2* ( =1/T2*) in hematopoietic marrow and lower average responses in fatty marrow, consistent with macrophage-specific uptake. However, certain regions of the diaphysis exhibited substantial R2* enhancement despite having very high fat content. This suggests the persistence of residual marrow stroma following adipose conversion, and may reflect the ability of diaphyseal marrow to adapt dynamically to fluctuating demand for hematopoiesis. Follow-up imaging demonstrated almost complete R2* recovery within 3 months. CONCLUSION: The observed R2* enhancement characteristics support applications for ferumoxytol in distinguishing normal or hypercellular marrow from neoplasms, infection and inflammation. Further studies are warranted in specific patient populations.
Assuntos
Medula Óssea/metabolismo , Meios de Contraste/farmacocinética , Dextranos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos de Coortes , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Nanopartículas de Magnetita , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Valores de Referência , Adulto JovemRESUMO
PURPOSE: To develop a bilateral coil and fat suppressed T1-weighted sequence for 7 Tesla (T) breast MRI. MATERIALS AND METHODS: A dual-solenoid coil and three-dimensional (3D) T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed. T1w FS image quality was characterized through image uniformity and fat-water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7T SNR advantage. RESULTS: Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat-water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. CONCLUSION: 7T T1w FS bilateral breast imaging is feasible with a custom radiofrequency (RF) coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns.
Assuntos
Mama/patologia , Meios de Contraste , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias da Mama/diagnóstico , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Adulto JovemRESUMO
PURPOSE: To evaluate diagnostic performance of three nonenhanced methods: variable-refocusing-flip angle (FA) fast spin-echo (SE)-based magnetic resonance (MR) angiography (variable FA MR) and constant-refocusing-FA fast SE-based MR angiography (constant-FA MR) and flow-sensitive dephasing (FSD)-prepared steady-state free precession MR angiography (FSD MR) for calf arteries, with dual-injection three-station contrast material-enhanced MR angiography (gadolinium-enhanced MR) as reference. MATERIALS AND METHODS: This prospective study was institutional review board approved and HIPAA compliant, with informed consent. Twenty-one patients (13 men, eight women; mean age, 62.6 years) underwent calf-station variable-FA MR, constant-FA MR, and FSD MR at 1.5 T, with gadolinium-enhanced MR as reference. Image quality and stenosis severity were assessed in 13 segments per leg by two radiologists blinded to clinical data. Combined constant-FA MR and FSD MR reading was also performed. Methods were compared (logistic regression for correlated data) for diagnostic accuracy. RESULTS: Of 546 arterial segments, 148 (27.1%) had a hemodynamically significant (≥ 50%) stenosis. Image quality was satisfactory for all nonenhanced MR sequences. FSD MR was significantly superior to both other sequences (P < .0001), with 5-cm smaller field of view; 9.6% variable-FA MR, 9.6% constant-FA MR, and 0% FSD MR segmental evaluations had nondiagnostic image quality scores, mainly from high diastolic flow (variable-FA MR) and motion artifact (constant-FA MR). Stenosis sensitivity and specificity were highest for FSD MR (80.3% and 81.7%, respectively), compared with those for constant-FA MR (72.3%, P = .086; and 81.8%, P = .96) and variable-FA MR (75.9%, P = .54; and 75.6%, P = .22). Combined constant-FA MR and FSD MR had superior sensitivity (81.8%) and specificity (88.3%) compared with constant-FA MR (P = .0076), variable-FA MR (P = .0044), and FSD MR (P = .0013). All sequences had an excellent negative predictive value (NPV): 93.2%, constant-FA MR; 94.7%, variable-FA MR; 91.7%, FSD MR; and 92.9%, combined constant-FA MR and FSD MR. CONCLUSION: At 1.5 T, all evaluated nonenhanced MR angiographic methods demonstrated satisfactory image quality and excellent NPV for hemodynamically significant stenosis. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120859/-/DC1.
Assuntos
Perna (Membro)/irrigação sanguínea , Angiografia por Ressonância Magnética/métodos , Doenças Vasculares Periféricas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Gadolínio DTPA , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Técnica de SubtraçãoRESUMO
PURPOSE: To improve robustness to patient motion of "fresh blood imaging" (FBI) for lower extremity noncontrast MR angiography. METHODS: In FBI, two sets of three-dimensional fast spin echo images are acquired at different cardiac phases and subtracted to generate bright-blood angiograms. Routinely performed with a single coronal slab and sequential acquisition of systolic and diastolic data, FBI is prone to subtraction errors due to patient motion. In this preliminary feasibility study, FBI was implemented with two sagittal imaging slabs, and the systolic and diastolic acquisitions were interleaved to minimize sensitivity to motion. The proposed technique was evaluated in volunteers and patients. RESULTS: In 10 volunteers, imaged while performing controlled movements, interleaved FBI demonstrated better tolerance to subject motion than sequential FBI. In one patient with peripheral arterial disease, interleaved FBI offered better depiction of collateral flow by reducing sensitivity to inadvertent motion. CONCLUSIONS: FBI with interleaved acquisition of diastolic and systolic data in two sagittal imaging slabs offers improved tolerance to patient motion.
Assuntos
Artefatos , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Movimento , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Perna (Membro)/patologia , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/patologia , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
OBJECTIVES: To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. METHODS: Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. RESULTS: Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. CONCLUSION: The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. KEY POINTS: ⢠High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. ⢠7-T high-resolution imaging improves delineation of subtle soft tissue structures. ⢠Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. ⢠7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. ⢠The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.
Assuntos
Doenças Mamárias/diagnóstico , Mama/patologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/instrumentação , Tecido Adiposo/patologia , Adulto , Diagnóstico Diferencial , Desenho de Equipamento , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto JovemRESUMO
OBJECTIVE: To create 3DMR osseous models of the shoulder similar to 3DCT models using a gradient-echo-based two-point/Dixon sequence. MATERIALS AND METHODS: CT and 3TMR examinations of 7 cadaveric shoulders were obtained. Glenoid defects were created in 4 of the cadaveric shoulders. Each MR study included an axial Dixon 3D-dual-echo-time T1W-FLASH (acquisition time of 3 min/30 s). The water-only image data from the Dixon sequence and CT data were post-processed using 3D software. The following measurements were obtained on the shoulders: surface area (SA), height/width of the glenoid and humeral head, and width of the biceps groove. The glenoid defects were measured on imaging and compared with measurements made on en face digital photographs of the glenoid fossae (reference standard). Paired t tests/ANOVA were used to assess the differences between the imaging modalities. RESULTS: The differences between the glenoid and humeral measurements were not statistically significant (cm): glenoid SA 0.12 ± 0.04 (p = 0.45) and glenoid width 0.13 ± 0.06 (p = 0.06) with no difference in glenoid height measurement; humeral head SA 0.07 ± 0.12 (p = 0.42), humeral head height 0.03 ± 0.06 (p = 0.42), humeral head width 0.07 ± 0.06(p = 0.18), and biceps groove width 0.02 ± 0.01 (p = 0.07). The mean/standard deviation difference between the reference standard and 3DMR measurements was 0.25 ± 0.96 %/0.30 ± 0.14 mm; 3DCT 0.25 ± 0.96 /0.75 ± 0.39 mm. There was no statistical difference between the measurements obtained on 3DMR and 3DCT (percentage, p = 0.45; mm, p = 0.20). CONCLUSION: Accurate 3D osseous models of the shoulder can be produced using a 3D two-point/Dixon sequence and can be added to MR examinations with a minor increase in imaging time, used to quantify glenoid loss, and may eliminate the need for pre-surgical CT examinations.
Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Procedimentos de Cirurgia Plástica/métodos , Articulação do Ombro/patologia , Articulação do Ombro/cirurgia , Cirurgia Assistida por Computador/métodos , Algoritmos , Cadáver , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
OBJECTIVES: We utilized dynamic magnetic resonance imaging to visualize the pharynx and upper esophageal segment in normal, healthy subjects. METHODS: A 3-T scanner with a 4-channel head coil and a dual-channel neck coil was used to obtain high-speed magnetic resonance images of subjects who were swallowing liquids and pudding. Ninety sequential images were acquired with a temporal resolution of 113 ms. Imaging was performed in axial planes at the levels of the oropharynx and the pharyngoesophageal segment. The images were then analyzed for variables related to alterations in the area of the pharynx and pharyngoesophageal segment during swallowing, as well as temporal measures related to these structures. RESULTS: All subjects tolerated the study protocol without complaint. Changes in the area of the pharyngeal wall lumen and temporal measurements were consistent within and between subjects. The inter-rater and intra-rater reliabilities for the measurement tool were excellent. CONCLUSIONS: Dynamic magnetic resonance imaging of the swallow sequence is both feasible and reliable and may eventually complement currently used diagnostic methods, as it adds substantive information.
Assuntos
Transtornos de Deglutição/diagnóstico , Deglutição/fisiologia , Imageamento por Ressonância Magnética/métodos , Faringe/fisiologia , Adolescente , Adulto , Esfíncter Esofágico Superior/anatomia & histologia , Esfíncter Esofágico Superior/fisiologia , Humanos , Tamanho do Órgão , Faringe/anatomia & histologia , Adulto JovemRESUMO
PURPOSE: To evaluate the ability of magnetization transfer (MT) contrast-prepared magnetic resonance (MR) imaging to help distinguish healthy from cirrhotic liver by using a spectrum of MT pulse frequency offsets. MATERIALS AND METHODS: This HIPAA-compliant prospective study was approved by the institutional review board. Written informed consent was obtained from all subjects. After optimization of the MT sequence by using agar phantoms with protein concentrations ranging from 0% to 4%, 20 patients with cirrhosis and portal hypertension and 20 healthy volunteers with no known liver disease underwent liver MR imaging that included eight separate breath-hold MT contrast sequences, each performed by using a different MT pulse frequency offset (range, 200-2500 Hz). Regions of interest were then placed to calculate the MT ratio for the liver, fat, and muscle in the volunteer group and for the liver in the cirrhosis group. RESULTS: MT ratio increased with decreasing MT pulse frequency offset for each of the four phantoms and the assessed in vivo tissues, consistent with previous reports. At all frequency offsets, MT ratio increased with increasing phantom protein concentration. In volunteers, at frequency offsets greater than 400 Hz, the MT ratio was significantly greater for muscle (range, 34.4%-54.9%) and significantly lower for subcutaneous fat (range, 10.3%-12.6%), compared with that for the liver (range, 22.8%-46.9%; P < .001 all comparisons). However, the MT ratio was nearly identical between healthy (range, 26.0%-80.0%) and cirrhotic livers (range, 26.7%-81.2%) for all frequency offsets (P = .162-.737), aside from a minimal difference in MT ratio of 1.7% at a frequency offset of 2500 Hz (22.8% in healthy liver vs 24.5% in cirrhotic liver) that was not significant when the Bonferroni correction was applied (P = .015). CONCLUSION: Findings of this study confirm the ability of the MT contrast-prepared sequence to help distinguish substances of varying protein concentration and suggest that MT imaging is unlikely to be of clinical utility in differentiating healthy and cirrhotic livers.
Assuntos
Cirrose Hepática/diagnóstico , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Estudos de Casos e Controles , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/patologia , Hipertensão Portal/terapia , Interpretação de Imagem Assistida por Computador , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Transplante de Fígado , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos , Índice de Gravidade de Doença , Taxa de SobrevidaRESUMO
PURPOSE: To assess the reproducibility and the distribution of intravoxel incoherent motion (IVIM) and diffusion-tensor (DT) imaging parameters in healthy renal cortex and medulla at baseline and after hydration or furosemide challenges. MATERIALS AND METHODS: Using an institutional review board-approved HIPAA-compliant protocol with written informed consent, IVIM and DT imaging were performed at 3 T in 10 volunteers before and after water loading or furosemide administration. IVIM (apparent diffusion coefficient [ADC], tissue diffusivity [D(t)], perfusion fraction [f(p)], pseudodiffusivity [D(p)]) and DT (mean diffusivity [MD], fractional anisotropy [FA], eigenvalues [λ(i)]) imaging parameters and urine output from serial bladder volumes were calculated. (a)Reproducibility was quantified with coefficient of variation, intraclass correlation coefficient, and Bland-Altman limits of agreement; (b) contrast and challenge response were quantified with analysis of variance; and (c) Pearson correlations were quantified with urine output. RESULTS: Good reproducibility was found for ADC, D(t), MD, FA, and λ(i) (average coefficient of variation, 3.7% [cortex] and 5.0% [medulla]), and moderate reproducibility was found for D(p), f(p), and f(p) · D(p) (average coefficient of variation, 18.7% [cortex] and 25.9% [medulla]). Baseline cortical diffusivities significantly exceeded medullary values except D(p), for which medullary values significantly exceeded cortical values, and λ(1,) which showed no contrast. ADC, D(t), MD, and λ(i) increased significantly for both challenges. Medullary diffusivity increases were dominated by transverse diffusion (1.72 ± 0.09 [baseline] to 1.79 ± 0.10 [hydration] µm(2)/msec, P = .0059; or 1.86 ± 0.07 [furosemide] µm(2)/msec, P = .0094). Urine output correlated with cortical ADC with furosemide (r = 0.7, P = .034) and with medullary λ(1) (r = 0.83, P = .0418), λ(2) (r = 0.85, P = .0301), and MD (r = 0.82, P = .045) with hydration. CONCLUSION: Diffusion MR metrics are sensitive to flow changes in kidney induced by diuretic challenges. The results of this study suggest that vascular flow, tubular dilation, water reabsorption, and intratubular flow all play important roles in diffusion-weighted imaging contrast.
Assuntos
Imagem de Tensor de Difusão/métodos , Diuréticos/administração & dosagem , Furosemida/administração & dosagem , Furosemida/metabolismo , Rim/metabolismo , Adulto , Algoritmos , Análise de Variância , Anisotropia , Feminino , Humanos , Injeções Intravenosas , Masculino , Movimento (Física) , Reprodutibilidade dos TestesRESUMO
PURPOSE: To investigate technical feasibility, test-retest reproducibility, and the ability to differentiate healthy subjects from subjects with osteoarthritis (OA) with diffusion-tensor (DT) imaging parameters and T2 relaxation time. MATERIALS AND METHODS: This study was approved by the institutional review board and was HIPAA compliant. All subjects provided written informed consent. DT imaging parameters and T2 (resolution=0.6×0.6×2 mm) of patellar cartilage were measured at 7.0 T in 16 healthy volunteers and 10 patients with OA with subtle inhomogeneous signal intensity but no signs of cartilage erosion at clinical magnetic resonance (MR) imaging. Ten volunteers were imaged twice to determine test-retest reproducibility. After cartilage segmentation, maps of mean apparent diffusion coefficient (ADC), fractional anisotropy (FA), and T2 relaxation time were calculated. Differences for ADC, FA, and T2 between the healthy and OA populations were assessed with nonparametric tests. The ability of each MR imaging parameter to help discriminate healthy subjects from subjects with OA was assessed by using receiver operating characteristic curve analysis. RESULTS: Test-retest reproducibility was better than 10% for mean ADC (8.1%), FA (9.7%), and T2 (5.9%). Mean ADC and FA differed significantly (P<.01) between the OA and healthy populations, but T2 did not. For ADC, the optimal threshold to differentiate both populations was 1.2×10(-3) mm2/sec, achieving specificity of 1.0 (16 of 16) and sensitivity of 0.80 (eight of 10). For FA, the optimal threshold was 0.25, yielding specificity of 0.88 (14 of 16) and sensitivity of 0.80 (eight of 10). T2 showed poor differentiation between groups (optimal threshold=22.9 msec, specificity=0.69 [11 of 16], sensitivity=0.60 [six of 10]). CONCLUSION: In vivo DT imaging of patellar cartilage is feasible, has good test-retest reproducibility, and may be accurate in discriminating healthy subjects from subjects with OA. ADC and FA are two promising biomarkers for early OA.
Assuntos
Cartilagem Articular/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Osteoartrite do Joelho/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Although there have been many advancements in cancer research, much is still unknown about the heterogeneous tumor microenvironment. Diffusion-weighted MRI has proven to be a viable and versatile microstructural probe. Diffusion-weighted sequences specifically sensitive to intravoxel incoherent motion (IVIM) have seen a recent resurgence of interest as they promise to provide a valuable window on the vascular microenvironment. To understand, test, and optimize IVIM-sensitive approaches, a complex flow phantom was constructed to mimic certain characteristics of the tumor microenvironment such as tortuous microvasculature, heterogeneous vascular permeability, and interstitial fluid pressure buildup. Results using this phantom on a clinical scanner platform confirmed IVIM sensitivity to microscopic flow effects. Biexponential fitting of signal decay curves enabled quantitative extraction of perfusion fraction, IVIM-related pseudodiffusivity, and tissue diffusivity. Parametric maps were also generated, illustrating the potential utility of IVIM-sensitive imaging in clinical settings. The flow phantom proved to be an effective test-bed for validating and optimizing the IVIM-MRI technique to provide surrogate markers for microvascular properties.
Assuntos
Angiografia por Ressonância Magnética/instrumentação , Reologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Noncontrast techniques for peripheral MR angiography are receiving renewed interest because of safety concerns about the use of gadolinium in patients with renal insufficiency. One class of techniques involves subtraction of dark-blood images acquired during fast systolic flow from bright-blood images obtained during slow diastolic flow. The goal of this work was to determine whether the inherent sparsity of the difference images could be exploited to achieve greater acceleration without loss of image quality in the context of generalized autocalibrating partially parallel acquisition (GRAPPA). It is shown that noise amplification at high acceleration factors can be reduced by performing subtraction on the raw data, before calculation of the GRAPPA weights, rather than on the final magnitude images. Use of the difference data to calculate the GRAPPA weights decreases the geometry factor (g-factor), because the difference data represent a sparse image set. This demonstrates an inherent property of GRAPPA and does not require the use of compressed sensing. Application of this approach to highly accelerated data from healthy volunteers resulted in similar depiction of large arteries to that obtained with low acceleration and standard reconstruction. However, visualization of very small vessels and arterial branches was compromised.
Assuntos
Algoritmos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Artéria Poplítea/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Poplítea/anatomia & histologia , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Diffusion-weighted imaging (DWI) involves data acquisitions at multiple b values. In this paper, we presented a method of selecting the b values that maximize estimation precision of the biexponential analysis of renal DWI data. We developed an error propagation factor for the biexponential model, and proposed to optimize the b-value samplings by minimizing the error propagation factor. A prospective study of four healthy human subjects (eight kidneys) was done to verify the feasibility of the proposed protocol and to assess the validity of predicted precision for DWI measures, followed by Monte Carlo simulations of DWI signals based on acquired data from renal lesions of 16 subjects. In healthy subjects, the proposed methods improved precision (P = 0.003) and accuracy (P < 0.001) significantly in region-of-interest based biexponential analysis. In Monte Carlo simulation of renal lesions, the b-sampling optimization lowered estimation error by at least 20-30% compared with uniformly distributed b values, and improved the differentiation between malignant and benign lesions significantly. In conclusion, the proposed method has the potential of maximizing the precision and accuracy of the biexponential analysis of renal DWI.