Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29343578

RESUMO

Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or "shock" drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection.IMPORTANCE The suggested "shock and kill" therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the "shocking" element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.


Assuntos
Infecções por HIV/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Quinolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , HIV-1/metabolismo , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células Jurkat , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/biossíntese , Provírus/genética , Triazóis/farmacologia , Carga Viral/efeitos dos fármacos , Integração Viral/efeitos dos fármacos
2.
Sci Adv ; 9(11): eade6675, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921041

RESUMO

Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , RNA , Ácido Valproico/farmacologia , Ativação Viral , Latência Viral
3.
mBio ; 12(6): e0298021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34872356

RESUMO

To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5' long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency. IMPORTANCE A reservoir of latent HIV-1 infected cells persists in the presence of combination antiretroviral therapy (cART), representing a major obstacle for viral eradication. Reactivation of the latent HIV-1 provirus is part of curative strategies which aim to promote clearance of the infected cells. Using a two-color haploid screen, we identified 69 candidate genes as latency-maintaining host factors and functionally validated a subset of 10 of those in additional T-cell-based cell line models of HIV-1 latency. We further demonstrated that CHD9 is associated with HIV-1's promoter, the 5' LTR, while this association is lost upon reactivation. Additionally, we characterized the latency reversal potential of FDA compounds targeting ADK, NF1, and GRIK5 and identify the GRIK5 inhibitor topiramate as a viable latency reversal agent with clinical potential.


Assuntos
Infecções por HIV/genética , HIV-1/fisiologia , Haploidia , Latência Viral , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ativação Viral
4.
Sci Adv ; 6(33): eaba6617, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851167

RESUMO

A leading pharmacological strategy toward HIV cure requires "shock" or activation of HIV gene expression in latently infected cells with latency reversal agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs, we used fungal secondary metabolites as a source of bioactive molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the positive transcription elongation factor b (P-TEFb) inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex, to be significantly reduced upon GTX treatment of CD4+ T cells. GTX directly disrupted 7SK snRNP by targeting La-related protein 7 (LARP7), releasing active P-TEFb, which phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD), inducing HIV transcription.


Assuntos
Gliotoxina , Infecções por HIV , HIV-1 , Gliotoxina/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Células HeLa , Humanos , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas , Ribonucleoproteínas Nucleares Pequenas/química , Fatores de Transcrição/metabolismo
5.
Curr Opin Virol ; 38: 37-53, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323521

RESUMO

HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Ilhas de CpG , Metilação de DNA , Desenvolvimento de Medicamentos , Regulação Viral da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , Repetição Terminal Longa de HIV , Humanos , Ativação Transcricional , Carga Viral , Ativação Viral/efeitos dos fármacos , Latência Viral/genética , Latência Viral/imunologia , Replicação Viral
6.
Cell Chem Biol ; 25(12): 1443-1455.e14, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197195

RESUMO

The persistence of a pool of latently HIV-1-infected cells despite combination anti-retroviral therapy treatment is the major roadblock for a cure. The BAF (mammalian SWI/SNF) chromatin remodeling complex is involved in establishing and maintaining viral latency, making it an attractive drug target for HIV-1 latency reversal. Here we report a high-throughput screen for inhibitors of BAF-mediated transcription in cells and the subsequent identification of a 12-membered macrolactam. This compound binds ARID1A-specific BAF complexes, prevents nucleosomal positioning, and relieves transcriptional repression of HIV-1. Through this mechanism, these compounds are able to reverse HIV-1 latency in an in vitro T cell line, an ex vivo primary cell model of HIV-1 latency, and in patient CD4+ T cells without toxicity or T cell activation. These macrolactams represent a class of latency reversal agents with unique mechanism of action, and can be combined with other latency reversal agents to improve reservoir targeting.


Assuntos
Proteínas Cromossômicas não Histona/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , HIV-1/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Camundongos , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/metabolismo , Latência Viral/genética
7.
EBioMedicine ; 3: 108-121, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870822

RESUMO

Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Descoberta de Drogas , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Proteínas Nucleares/antagonistas & inibidores , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Biomarcadores , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Repetição Terminal Longa de HIV , Humanos , Imunofenotipagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Linfócitos T/metabolismo , Linfócitos T/virologia , Transcrição Gênica
8.
Vascul Pharmacol ; 71: 127-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25869523

RESUMO

Heme oxygenase-1 (HO-1) mitigates cellular injury by antioxidant, anti-apoptotic, anti-inflammatory and proangiogenic effects. Vascular endothelial growth factor (VEGF) is a critical regulator of blood vessel growth. Their coordinated action was analyzed in a model of femoral artery ligation (FAL) in mice lacking HO-1 gene (HO-1 KO). Gastrocnemius skeletal muscles of HO-1 KO mice were preemptively injected with plasmids containing hypoxia-response element (HRE) driving the expression of only HO-1 (pHRE-HO1) or both HO-1 and VEGF (pHRE-HO1-VEGF). At day 14th the pHRE-HO1 vector increased an impaired post-ischemic blood flow recovery in HO-1 KO mice to the level observed in wild-type (WT) mice subjected to FAL and pHRE-HO1-VEGF restored it already at day 7. The pHRE-HO1 gene therapy diminished, when compared to control pHRE-empty-treated HO-1 KO mice, the expression of toll-like receptors (TLR4 and TLR9) and inflammatory cytokines (IL-1ß, IL-6 and TNFα) at day 3, whereas opposite effects were observed following concomitant HO-1 and VEGF gene transfer. Moreover, HO-1 diminished ischemia-induced expression of MyoD involved in satellite cell differentiation in HO-1 KO mice. Our results confirm the therapeutic potential of HO-1 and VEGF against critical limb ischemia although, their concomitant delivery may have contradictory actions on the resolution of inflammation.


Assuntos
Heme Oxigenase-1/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunidade Celular/fisiologia , Isquemia/genética , Receptores Toll-Like/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Feminino , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Heme Oxigenase-1/administração & dosagem , Membro Posterior/irrigação sanguínea , Subunidade alfa do Fator 1 Induzível por Hipóxia/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Isquemia/imunologia , Isquemia/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica/fisiologia , Receptores Toll-Like/imunologia
9.
Vasc Cell ; 5: 13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23816205

RESUMO

BACKGROUND: Gene therapy stimulating the growth of blood vessels is considered for the treatment of peripheral and myocardial ischemia. Here we aimed to achieve angiogenic synergism between vascular endothelial growth factor-A (VEGF-A, VEGF) and fibroblast growth factor 4 (FGF4) in murine normoperfused and ischemic limb muscles. METHODS: Adeno-associated viral vectors (AAVs) carrying ß-galactosidase gene (AAV-LacZ), VEGF-A (AAV-VEGF-A) or two angiogenic genes (AAV-FGF4-IRES-VEGF-A) were injected into the normo-perfused adductor muscles of C57Bl/6 mice. Moreover, in a different experiment, mice were subjected to unilateral hindlimb ischemia by femoral artery ligation followed by intramuscular injections of AAV-LacZ, AAV-VEGF-A or AAV-FGF4-IRES-VEGF-A below the site of ligation. Post-ischemic blood flow recovery was assessed sequentially by color laser Doppler. Mice were monitored for 28 days. RESULTS: VEGF-A delivered alone (AAV-VEGF-A) or in combination with FGF4 (AAV-FGF4-IRES-VEGF-A) increased the number of capillaries in normo-perfused hindlimbs when compared to AAV-LacZ. Simultaneous overexpression of both agents (VEGF-A and FGF4) stimulated the capillary wall remodeling in the non-ischemic model. Moreover, AAV-FGF4-IRES-VEGF-A faster restored the post-ischemic foot blood flow and decreased the incidence of toe necrosis in comparison to AAV-LacZ. CONCLUSIONS: Synergy between VEGF-A and FGF4 to produce stable and functional blood vessels may be considered a promising option in cardiovascular gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA