Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 33(14): 3413-3426, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28277669

RESUMO

Reversible NIR-active nanoparticle clusters with controlled size from 20 to 100 nm were assembled from 5 nm gold nanoparticles (Au NP), with either citrate (CIT) or various binary ligands on the surface, by tuning the electrostatic repulsion and the hydrogen bonding via pH. The nanoclusters were bound together by vdW forces between the cores and the hydrogen bonds between the surface ligands and dissociated to primary nanoparticles over a period of 20 days at pH 5 and at pH 7. When high levels of citrate ligands were used on the primary particle surfaces, the large particle spacings in the nanoclusters led to only modest NIR extinction. However, a NIR extinction (E1000/525) ratio of up to ∼0.4 was obtained for nanoclusters with binary ligand mixtures composed of citrate and either cysteine (CYS), glutathione (GSH), or thioctic acid zwitterion (TAZ) while maintaining full reversibility to primary particles. The optimum ligand ratio for both an E1000/525 of ∼0.4 and full reversibility decreased with increasing length of the secondary ligand (1.5/1 for CYS/CIT, 0.75/1 for GSH/CIT, and 0.5/1 for TAZ/CIT) because a longer secondary ligand maintains a sufficient interparticle spacing required for dissociation more effectively. Interestingly, the zeta potential and the first-order rate constant for nanocluster dissociation were similar for all three systems at the optimum ligand ratios. After incubation in 10 mM GSH solution (intracellular concentration), only the TAZ/CIT primary nanoparticles were resistant to protein opsonization in 100% fetal bovine serum, as the bidentate binding and zwitterion tips of TAZ resisted GSH exchange and protein opsonization, respectively.

2.
Langmuir ; 32(4): 1127-38, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26735290

RESUMO

The self-assembly of citrate-capped Au nanoparticles (5 nm) resulted in branched nanochains by adding CaCl2 versus spherical nanoclusters for NaCl. These assemblies were formed between 1 s to 30 min by tuning the electrostatic repulsion and the interparticle bridging attraction between the cations and citrate ligands as a function of electrolyte concentration. For dilute Ca(2+), strong interparticle bridging favored particle attachment at chain ends. This resulted in the formation of small, branched chains with lengths as short as 20 nm, due to the large Debye length for the diffuse counterions. Furthermore, the bridging produced very small interparticle spacings and sintering, as evident in high-resolution TEM despite the low temperature. This morphology produced a large red shift in the surface plasmon resonance, as characterized by a broad extinction peak with NIR absorption out to 1000 nm, which is unusual for such small particles. Whereas these properties were seen for primary particles with partial citrate monolayers, the degrees of sintering and NIR extinction were small in the case of citrate multilayers. The ability to design the size and shape of nanoparticle clusters as well as the interparticle spacing by tuning bridging and electrostatic interactions may be expected to be quite general and of broad applicability in materials synthesis.


Assuntos
Cloreto de Cálcio/química , Ouro/química , Nanopartículas Metálicas/química , Nanosferas/química , Citratos/química , Coloides , Luz , Tamanho da Partícula , Espalhamento de Radiação , Cloreto de Sódio/química , Citrato de Sódio
3.
J Am Chem Soc ; 135(21): 7799-802, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23565806

RESUMO

The adsorption of even a single serum protein molecule on a gold nanosphere used in biomedical imaging may increase the size too much for renal clearance. In this work, we designed charged ~5 nm Au nanospheres coated with binary mixed-charge ligand monolayers that do not change in size upon incubation in pure fetal bovine serum (FBS). This lack of protein adsorption was unexpected in view of the fact that the Au surface was moderately charged. The mixed-charge monolayers were composed of anionic citrate ligands modified by place exchange with naturally occurring amino acids: either cationic lysine or zwitterionic cysteine ligands. The zwitterionic tips of either the lysine or cysteine ligands interact weakly with the proteins and furthermore increase the distance between the "buried" charges closer to the Au surface and the interacting sites on the protein surface. The ~5 nm nanospheres were assembled into ~20 nm diameter nanoclusters with strong near-IR absorbance (of interest in biomedical imaging and therapy) with a biodegradable polymer, PLA(1k)-b-PEG(10k)-b-PLA(1k). Upon biodegradation of the polymer in acidic solution, the nanoclusters dissociated into primary ~5 nm Au nanospheres, which also did not adsorb any detectable serum protein in undiluted FBS.


Assuntos
Proteínas Sanguíneas/química , Ouro/química , Nanopartículas Metálicas/química , Soro , Adsorção , Animais , Bovinos , Espectroscopia de Luz Próxima ao Infravermelho
4.
J Phys Chem C Nanomater Interfaces ; 118(26): 14291-14298, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25061496

RESUMO

Gold nanospheres coated with a binary monolayer of bound citrate and cysteine ligands were assembled into nanoclusters, in which the size and near-infrared (NIR) extinction were tuned by varying the pH and concentration of added NaCl. During full evaporation of an aqueous dispersion of 4.5 ± 1.8 nm Au primary particles, the nanoclusters were formed and quenched by the triblock copolymer polylactic acid (PLA)(1K)-b-poly(ethylene glycol) (PEG)(10K)-b-PLA(1K), which also provided steric stabilization. The short-ranged depletion and van der Waals attractive forces were balanced against longer ranged electrostatic repulsion to tune the nanocluster diameter and NIR extinction. Upon lowering the pH from 7 to 5 at a given salinity, the magnitude of the charge on the primary particles decreased, such that the weaker electrostatic repulsion increased the hydrodynamic diameter and, consequently, NIR extinction of the clusters. At a given pH, as the concentration of NaCl was increased, the NIR extinction decreased monotonically. Furthermore, the greater screening of the charges on the nanoclusters weakened the interactions with PLA(1K)-b-PEG(10K)-b-PLA(1K) and thus lowered the amount of adsorbed polymer on the nanocluster surface. The generalization of the concept of self-assembly of small NIR-active nanoclusters to include a strongly bound thiol and the manipulation of the morphologies and NIR extinction by variation of pH and salinity not only is of fundamental interest but also is important for optical biomedical imaging and therapy.

5.
ACS Nano ; 7(1): 239-51, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23230905

RESUMO

Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors, and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semiquantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging.


Assuntos
Implantes Absorvíveis , Cristalização/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Polímeros/química , Teste de Materiais , Tamanho da Partícula
6.
ACS Appl Mater Interfaces ; 1(7): 1364-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20355935

RESUMO

Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyldisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators for the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher in molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface. Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density.


Assuntos
Cianoacrilatos/química , Nanocompostos/química , Nanotecnologia/métodos , Dióxido de Silício/química , Acrilatos/química , Adsorção , Aminas/química , Catálise , Gases , Géis , Polímeros/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Fatores de Tempo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA