Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 32(3): 664-72, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26716949

RESUMO

The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-µSR), avoided level crossing muon spin resonance (ALC-µSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, µSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.

2.
Phys Rev Lett ; 112(22): 224801, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949772

RESUMO

A 10 MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 µs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

3.
Phys Chem Chem Phys ; 12(33): 9900-8, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20535408

RESUMO

Avoided level crossing muon spin resonance (ALC-muSR) has been used to study the cyclohexadienyl-type radicals produced by the addition of muonium (Mu) to the discotic liquid crystal HAT6 (2,3,6,7,10,11-hexahexyloxytriphenylene) in the crystalline (Cr) phase, the hexagonal columnar mesophase (Col(h)) and isotropic (I) phase. In the Cr phase unpaired electron spin density can be transferred from the radical to neighboring HAT6 molecules depending on the overlap of their pi-systems and hence on the relative orientation of the triphenylene rings. The two Delta(1) resonances in the ALC-muSR spectra of the Cr phase indicate that the neighboring HAT6 molecules have two preferred orientations with respect to the radical: one which results in negligible spin density transfer and a second where 17% of the unpaired spin density is transferred. The ALC-muSR spectra in Col(h) and I phases are substantially different from those of the Cr phase in that there are two narrow resonances superimposed on an extremely broad and intense resonance. The narrow resonances are due to highly mobile radicals located in the aliphatic region between the columns and the broad resonance is due to radicals incorporated within the columns of HAT6 molecules. The large width and amplitude of this resonance indicates that the radicals within the columns are undergoing rapid electron spin relaxation but the mechanism that causes this relaxation is unknown.

4.
J Phys Chem B ; 113(30): 10135-42, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19719282

RESUMO

Avoided level crossing muon spin resonance (ALC-microSR) spectroscopy has been used to study the four cyclohexadienyl-type radicals produced by the addition of muonium (Mu) to the rodlike liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB). ALC-microSR spectra have been obtained over a wide temperature range in the isotropic, nematic, and crystalline phases. Four Delta0 resonances were observed in the ALC-microSR spectra, from which the methylene proton hyperfine coupling constants (hfcs) of the Mu adducts of 5CB were determined as a function of temperature. The methylene proton hfcs of two of the radicals have unusual temperature dependence in the nematic phase and have smaller values than would be predicted from extrapolating the data in the isotropic phase. We have used the Maier-Saupe theory for rodlike liquid crystals to explain the temperature dependence of the methylene proton hfcs, which results from the ordering of the 5CB molecules, the alignment of the molecules with the external magnetic field, and fluctuations that average the anisotropic hyperfine coupling constants. There are no Delta1 resonances in the ALC-microSR spectra of the nematic phase due to the radicals rotating rapidly around the long molecular axis and fluctuations about the local director. The Delta0 resonances broaden substantially as the temperature is lowered due to the slowing down of the fluctuations, which have an average activation energy of approximately 15.9 kJ mol(-1). Cooling the sample below 275 K stopped the rotation around the long molecular axis and led to the appearance of Delta1 resonances.

6.
Artigo em Inglês | MEDLINE | ID: mdl-23410346

RESUMO

Avoided level crossing muon spin resonance (ALC-µSR) spectroscopy was used to study radicals produced by the addition of the light hydrogen isotope muonium (Mu) to the discotic liquid crystal (DLC) 2,3,6,7,10,11-hexahexylthiotriphenylene (HHTT). Mu adds to the secondary carbon atoms of HHTT to produce a substituted cyclohexadienyl radical, whose identity was confirmed by comparing the measured hyperfine coupling constants with values obtained from DFT calculations. ALC-µSR spectra were obtained in the isotropic (I), hexagonal columnar (Col(h)), helical (H), and crystalline (Cr) phases. In the I and Col(h) phases the radicals, which are incorporated within the stacks of HHTT molecules as isolated paramagnetic defects, undergo extremely rapid electron spin relaxation, on the order of a hundredfold faster than in the H or Cr phases. The electron spin relaxation rate increases significantly with increasing temperature and appears to be caused by the liquidlike motion within the columns, which modulates the overlap between the π system of the radical and the π systems of the neighboring HHTT molecules, and hence, the hyperfine coupling constants. Rapid electron spin relaxation should occur for any π radical incorporated within the columns of a DLC, which may limit the utility of DLCs for future spin-based technologies.


Assuntos
Cristais Líquidos/química , Mésons , Modelos Químicos , Modelos Moleculares , Anisotropia , Simulação por Computador , Transporte de Elétrons , Transição de Fase , Marcadores de Spin
7.
J Phys Chem B ; 115(30): 9360-8, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21749057

RESUMO

Muoniated spin probes were produced by the addition of muonium (Mu) to two rod-like liquid crystals: N-(4-methoxybenzylidene)-4'-n-butylaniline (MBBA) and cholesteryl nonanoate (CN). Avoided level crossing muon spin resonance spectroscopy was used to characterize the muoniated spin probes and to probe dynamics at the molecular level. In MBBA Mu adds predominantly to the carbon of the bridging imine group and the muon and methylene proton hyperfine coupling constants (hfccs) of the resulting radical shift in the nematic phase due to the dipolar hyperfine coupling, the ordering of the molecules along the applied magnetic field and fluctuations about the local director. The amplitude of these fluctuations in in the nematic phase of MBBA is determined from the temperature dependence of the methylene proton hfcc. Mu adds to the double bond of the steroidal ring system of CN and the temperature dependence of the Δ(1) line width provides information about the amplitude of the fluctuations about the local director in the chiral nematic phase and the slow isotropic reorientation in the isotropic phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA