Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; : e13919, 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37211393

RESUMO

Attention is impaired in many neuropsychiatric disorders, as well as by sleep disruption, leading to decreased workplace productivity and increased risk of accidents. Thus, understanding the neural substrates is important. Here we test the hypothesis that basal forebrain neurons that contain the calcium-binding protein parvalbumin modulate vigilant attention in mice. Furthermore, we test whether increasing the activity of basal forebrain parvalbumin neurons can rescue the deleterious effects of sleep deprivation on vigilance. A lever release version of the rodent psychomotor vigilance test was used to assess vigilant attention. Brief and continuous low-power optogenetic excitation (1 s, 473 nm @ 5 mW) or inhibition (1 s, 530 nm @ 10 mW) of basal forebrain parvalbumin neurons was used to test the effect on attention, as measured by reaction time, under control conditions and following 8 hr of sleep deprivation by gentle handling. Optogenetic excitation of basal forebrain parvalbumin neurons that preceded the cue light signal by 0.5 s improved vigilant attention as indicated by quicker reaction times. By contrast, both sleep deprivation and optogenetic inhibition slowed reaction times. Importantly, basal forebrain parvalbumin excitation rescued the reaction time deficits in sleep-deprived mice. Control experiments using a progressive ratio operant task confirmed that optogenetic manipulation of basal forebrain parvalbumin neurons did not alter motivation. These findings reveal for the first time a role for basal forebrain parvalbumin neurons in attention, and show that increasing their activity can compensate for disruptive effects of sleep deprivation.

2.
Mol Psychiatry ; 26(7): 3461-3475, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32690865

RESUMO

Increases in broadband cortical electroencephalogram (EEG) power in the gamma band (30-80 Hz) range have been observed in schizophrenia patients and in mouse models of schizophrenia. They are also seen in humans and animals treated with the psychotomimetic agent ketamine. However, the mechanisms which can result in increased broadband gamma power and the pathophysiological implications for cognition and behavior are poorly understood. Here we report that tonic optogenetic manipulation of an ascending arousal system bidirectionally tunes cortical broadband gamma power, allowing on-demand tests of the effect on cortical processing and behavior. Constant, low wattage optogenetic stimulation of basal forebrain (BF) neurons containing the calcium-binding protein parvalbumin (PV) increased broadband gamma frequency power, increased locomotor activity, and impaired novel object recognition. Concomitantly, task-associated gamma band oscillations induced by trains of auditory stimuli, or exposure to novel objects, were impaired, reminiscent of findings in schizophrenia patients. Conversely, tonic optogenetic inhibition of BF-PV neurons partially rescued the elevated broadband gamma power elicited by subanesthetic doses of ketamine. These results support the idea that increased cortical broadband gamma activity leads to impairments in cognition and behavior, and identify BF-PV activity as a modulator of this activity. As such, BF-PV neurons may represent a novel target for pharmacotherapy in disorders such as schizophrenia which involve aberrant increases in cortical broadband gamma activity.


Assuntos
Prosencéfalo Basal , Esquizofrenia , Animais , Nível de Alerta , Prosencéfalo Basal/metabolismo , Eletroencefalografia , Humanos , Camundongos , Optogenética , Parvalbuminas/metabolismo , Esquizofrenia/genética
3.
J Neurophysiol ; 123(1): 22-33, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747354

RESUMO

The type 5 metabotropic glutamate receptor (mGluR5) represents a novel therapeutic target for schizophrenia and other disorders. Schizophrenia is associated with progressive abnormalities in cortical oscillatory processes including reduced spindles (8-15 Hz) during sleep and increased delta (0.5-4 Hz)- and gamma-band activity (30-80 Hz) during wakefulness. mGluR5 knockout (KO) mice demonstrate many schizophrenia-like behaviors, including abnormal sleep. To examine the effects of mGluR5 on the maintenance of the neocortical circuitry responsible for such neural oscillations, we analyzed sleep/wake electroencephalographic (EEG) activity of mGluR5 KO mice at baseline, after 6 h of sleep deprivation, and during a visual method of cortical entrainment (visual steady state response). We hypothesized mGluR5-KO mice would exhibit translationally relevant abnormalities in sleep and neural oscillations that mimic schizophrenia. Power spectral and spindle density analyses were performed across 24-h EEG recordings in mGluR5-KO mice and wild-type (WT) controls. Novel findings in mGluR5 KO mice include deficits in sleep spindle density, wake alpha power, and 40-Hz visual task-evoked gamma power and phase locking. Sigma power (10-15 Hz), an approximation of spindle activity, was also reduced during non-rapid eye movement sleep transitions. Our observations on abnormal sleep/wake are generally in agreement with previous reports, although we did not replicate changes in rapid eye movement sleep. The timing of these phenotypes may suggest an impaired circadian process in mGluR5 KO mice. In conclusion, EEG phenotypes in mGluR5 KO mice resemble deficits observed in patients with schizophrenia. These findings implicate mGluR5-mediated pathways in several translationally relevant phenotypes associated with schizophrenia, and suggest that agents targeting this receptor may have harmful consequences on sleep health and daily patterns of EEG power.NEW & NOTEWORTHY Metabotropic glutamate receptor type 5 (mGluR5) knockout (KO) mice show several translationally relevant abnormalities in neural oscillatory activity associated with schizophrenia. These include deficits in sleep spindle density, sigma and alpha power, and 40-Hz task-evoked gamma power. The timing of these phenotypes suggests an impaired circadian process in these mice. Previously reported rapid eye movement sleep deficits in this model were not observed. These findings suggest mGluR5-enhancing drugs may improve sleep stability and sleep spindle density, which could impact memory and cognition.


Assuntos
Ondas Encefálicas/fisiologia , Ritmo Circadiano/fisiologia , Potenciais Evocados Visuais/fisiologia , Receptor de Glutamato Metabotrópico 5 , Esquizofrenia/fisiopatologia , Privação do Sono/fisiopatologia , Fases do Sono/fisiologia , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissonografia , Vigília/fisiologia
4.
Proc Natl Acad Sci U S A ; 114(9): E1727-E1736, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193862

RESUMO

Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.


Assuntos
Homeostase/fisiologia , Sono REM/fisiologia , Animais , Encéfalo/fisiologia , Eletroencefalografia/métodos , Feminino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Privação do Sono/fisiopatologia
5.
Physiol Rev ; 92(3): 1087-187, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22811426

RESUMO

This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.


Assuntos
Encéfalo/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Sono , Vigília , Animais , Atenção , Encéfalo/metabolismo , Ondas Encefálicas , Cognição , Emoções , Predisposição Genética para Doença , Genômica , Humanos , Memória , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/fisiopatologia , Fenótipo , Proteômica , Transdução de Sinais , Sono/genética , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/psicologia , Transtornos do Sono-Vigília/terapia , Sono REM , Vigília/genética
6.
J Sleep Res ; 28(2): e12792, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30461100

RESUMO

Insomnia involves disruption of sleep initiation, maintenance and/or overall quality, and may interfere with cognition. Here, we evaluated memory impairment produced by rodent mild (acute) insomnia models. Insomnia models consisted of either single or repeated exposure to cages previously occupied (dirtied) by an unfamiliar rat for 5-7 days. Rats were trained in the Morris water maze to remember the platform location (acquisition), and were then exposed to: (a) 6 hr of undisturbed baseline; (b) dirty cage change-induced insomnia (animal placed into a cage dirtied by another rat for 6 hr); or (c) double-dirty cage change-induced insomnia (animal placed into a cage dirtied by another rat for 3 hr, and then another dirty cage 3 hr later). The animal's memory for the platform location was then evaluated in a probe trial. Double-dirty cage change-induced insomnia significantly disrupted sleep, although the effects of dirty cage change-induced insomnia were overall not significant. In the fourth hour of double-dirty cage change-induced insomnia (following the second cage change), sleep episode number and duration alterations indicated sleep fragmentation. Furthermore, power spectral analysis revealed diminished wake and, to a lesser extent, rapid eye movement theta power (indicated by trend difference) in the last 3 hr of exposure. Significant deficits were noted for measures of water maze performance following double-dirty cage change-induced insomnia, indicating impaired memory. In summary, one variant of the rodent insomnia model, double-dirty cage change-induced insomnia, disrupted sleep and attenuated memory consolidation, indicating this paradigm may be useful to evaluate the effects of hypnotics on memory consolidation.


Assuntos
Consolidação da Memória/fisiologia , Roedores/psicologia , Distúrbios do Início e da Manutenção do Sono/etiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 112(11): 3535-40, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733878

RESUMO

Cortical gamma band oscillations (GBO, 30-80 Hz, typically ∼40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ∼40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia.


Assuntos
Prosencéfalo Basal/fisiologia , Ritmo Gama/fisiologia , Neurônios/fisiologia , Parvalbuminas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Channelrhodopsins , Neurônios Colinérgicos/fisiologia , Potenciais Evocados Auditivos/fisiologia , Proteínas Luminescentes/metabolismo , Camundongos , Optogenética , Reprodutibilidade dos Testes , Transdução Genética
8.
J Undergrad Neurosci Educ ; 16(2): A159-A167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057498

RESUMO

There are advantages and limitations associated with a science, technology, engineering and math (STEM) education at small, liberal arts colleges relative to larger universities. While there may be increased opportunity for personal attention and access to faculty, students at liberal arts colleges may not always have the opportunity to gain experience with state-of-the-art equipment and technology. Herein, we describe a case study of an inter-institutional partnership between Stonehill College and two neuroscience research laboratories which are part of the Veterans Affairs Boston Healthcare System (VABHS). Both laboratories are affiliated with Harvard Medical School (HMS). We discuss the benefits as well as the challenges associated with the development and maintenance of this partnership. The experience with the use of sophisticated instrumentation and technology available in these laboratories may give students a competitive edge when applying to graduate school programs. However, we contend that the most important advantage of this research experience is the development of a sense of self-esteem and professional competence that will allow students to meet the many challenges that lie ahead in graduate school and beyond.

9.
Brain Behav Immun ; 62: 137-150, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109896

RESUMO

Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1ß) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1ß into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1ß, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1ß-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1ß. NLRP3, ASC, and IL1ß mRNA, IL-1ß protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Inflamassomos/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Polissonografia , Transdução de Sinais/fisiologia , Privação do Sono/genética , Vigília/fisiologia
10.
J Sleep Res ; 24(5): 549-558, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25900125

RESUMO

Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and ß-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in ß-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.


Assuntos
Encéfalo/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Purinérgicos P1/metabolismo , Privação do Sono/metabolismo , Animais , Autorradiografia , Prosencéfalo Basal/metabolismo , Doença Crônica , Giro do Cíngulo/metabolismo , Masculino , Transtornos Neurocognitivos/complicações , Transtornos Neurocognitivos/metabolismo , Tubérculo Olfatório/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Sono/fisiologia , Privação do Sono/complicações , Substância Inominada/metabolismo , Fatores de Tempo , Vigília/fisiologia
11.
Arch Ital Biol ; 150(1): 5-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22786833

RESUMO

Prior research has reported beneficial effects of melatonin in rodent models of Alzheimer's disease (AD). This study evaluated the effect of ramelteon (Rozerem, a melatonin receptor agonist) on spatial learning & memory and neuropathological markers in a transgenic murine model of AD (the B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J transgenic mouse strain; hereafter 'AD mice'). Three months of daily ramelteon treatment (~3mg/kg/day), starting at 3 months of age, did not produce an improvement in the cognitive performance of AD mice (water maze). In contrast to wild-type control mice, AD mice did not show any evidence of having learned the location of the escape platform. The cortex and hippocampus of AD mice contained significant quantities of beta-amyloid plaques and PARP-positive (poly ADP ribose polymerase) cells, indicating apoptosis. Six months of ramelteon treatment, starting at 3 months of age, did not produce any change in these neuropathological markers. The ability of long term melatonin treatment to improve cognition and attenuate neuropathology in AD mice did not generalize to this dosage of ramelteon.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Indenos/uso terapêutico , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/genética , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Seguimentos , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Presenilina-1/genética , Fatores de Tempo
12.
Brain Res Bull ; 188: 47-58, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878679

RESUMO

Experimental evidence has implicated multiple neurotransmitter systems in either the direct or indirect modulation of cortical arousal and attention circuitry. In this review, we selectively focus on three such systems: 1) norepinephrine (NE)-containing neurons of the locus coeruleus (LC), 2) acetylcholine (ACh)-containing neurons of the basal forebrain (BF), and 3) parvalbumin (PV)-containing gamma-aminobutyric acid neurons of the BF. Whereas BF-PV neurons serve as a rapid and transient arousal system, LC-NE and BF-ACh neuromodulation are typically activated on slower but longer-lasting timescales. Recent findings suggest that the BF-PV system serves to rapidly respond to even subtle sensory stimuli with a microarousal. We posit that salient sensory stimuli, such as those that are threatening or predict the need for a response, will quickly activate the BF-PV system and subsequently activate both the BF-ACh and LC-NE systems if the circumstances require longer periods of arousal and vigilance. We suggest that NE and ACh have overlapping psychological functions with the main difference being the precise internal/environmental sensory situations/contexts that recruit each neurotransmitter system - a goal for future research to determine. Implications of dysfunction of each of these three attentional systems for our understanding of neuropsychiatric conditions are considered. Finally, the contemporary availability of research tools to selectively manipulate and measure the activity of these distinctive neuronal populations promises to answer longstanding questions, such as how various arousal systems influence downstream decision-making and motor responding.


Assuntos
Prosencéfalo Basal , Locus Cerúleo , Acetilcolina , Nível de Alerta/fisiologia , Atenção/fisiologia , Prosencéfalo Basal/metabolismo , Locus Cerúleo/metabolismo , Norepinefrina , Parvalbuminas/metabolismo , Vigília/fisiologia
13.
Neurobiol Learn Mem ; 96(4): 564-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875679

RESUMO

A substantial body of literature supports the intuitive notion that a good night's sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances.


Assuntos
Encéfalo/fisiopatologia , Transtornos Cognitivos/etiologia , Cognição/fisiologia , Privação do Sono/complicações , Sono/fisiologia , Atenção/fisiologia , Transtornos Cognitivos/fisiopatologia , Humanos , Testes Neuropsicológicos , Privação do Sono/fisiopatologia
14.
Neuroscience ; 463: 30-44, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33737028

RESUMO

Dual orexinergic antagonists (DORAs) have been recently developed as a pharmacotherapy alternative to established hypnotics. Hypnotics are largely evaluated in preclinical rodent models in the dark/active period yet should be ideally evaluated in the light/inactive period, analogous to when sleep disruption occurs in humans. We describe here the hypnotic efficacy of DORA-22 in rodent models of sleep disturbance produced by cage changes in the light/inactive period. Rats were administered DORA-22 or the GABA receptor-targeting hypnotic eszopiclone early in the light period, then exposed to six hourly clean cage changes with measurements of NREM sleep onset latency. Both compounds initially promoted sleep (hours 1 and 2), with DORA-22 exhibiting a more rapid hypnotic onset; and exhibited extended efficacy, evident six hours after administration in a sleep latencies test. A common complaint concerning hypnotic use is lingering hypersomnolence, and this is a concern in pharmacotherapy of the elderly. A second study was designed to determine a minimal dose of DORA-22 which would initially promote sleep but exhibit minimal extended hypnotic effect.Animals were administered DORA-22, then exposed for six hours to a single cage previously dirtied by a conspecific, followed by return to home cage. EEG measures indicated that all DORA-22 doses largely promoted sleep in the first hour. The lowest dose (1 mg/kg) did not decrease sleep onset latency at the six-hour timepoint, suggesting no residual hypersomnolence. We described here DORA-22 hypnotic efficacy during the normal sleep period of nocturnal rats, and demonstrate that well-chosen (low) hypnotic doses of DORA-22 may be hypnotically effective yet have minimal lingering effects.


Assuntos
Antagonistas dos Receptores de Orexina , Sono , Animais , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina , Piperidinas/farmacologia , Ratos , Triazóis/farmacologia
15.
Sleep ; 43(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31595304

RESUMO

Insomnia-related sleep disruption can contribute to impaired learning and memory. Treatment of insomnia should ideally improve the sleep profile while minimally affecting mnemonic function, yet many hypnotic drugs (e.g. benzodiazepines) are known to impair memory. Here, we used a rat model of insomnia to determine whether the novel hypnotic drug DORA-22, a dual orexin receptor antagonist, improves mild stress-induced insomnia with minimal effect on memory. Animals were first trained to remember the location of a hidden platform (acquisition) in the Morris Water Maze and then administered DORA-22 (10, 30, or 100 mg/kg doses) or vehicle control. Animals were then subjected to a rodent insomnia model involving two exposures to dirty cages over a 6-hr time period (at time points 0 and 3 hr), followed immediately by a probe trial in which memory of the water maze platform location was evaluated. DORA-22 treatment improved the insomnia-related sleep disruption-wake was attenuated and NREM sleep was normalized. REM sleep amounts were enhanced compared with vehicle treatment for one dose (30 mg/kg). In the first hour of insomnia model exposure, DORA-22 promoted the number and average duration of NREM sleep spindles, which have been previously proposed to play a role in memory consolidation (all doses). Water maze measures revealed probe trial performance improvement for select doses of DORA-22, including increased time spent in the platform quadrant (10 and 30 mg/kg) and time spent in platform location and number of platform crossings (10 mg/kg only). In conclusion, DORA-22 treatment improved insomnia-related sleep disruption and memory consolidation deficits.


Assuntos
Preparações Farmacêuticas , Distúrbios do Início e da Manutenção do Sono , Animais , Piperidinas , Ratos , Roedores , Sono , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/etiologia , Triazóis
16.
Sci Rep ; 10(1): 18, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924847

RESUMO

Compensatory elevation in NREM sleep EEG delta power has been typically observed following prolonged wakefulness and widely used as a sleep homeostasis indicator. However, recent evidence in human and rodent chronic sleep restriction (CSR) studies suggests that NREM delta power is not progressively increased despite of accumulated sleep loss over days. In addition, there has been little progress in understanding how sleep EEG in different brain regions responds to CSR. Using novel high-density EEG electrode arrays in the mouse model of CSR where mice underwent 18-h sleep deprivation per day for 5 consecutive days, we performed an extensive analysis of topographical NREM sleep EEG responses to the CSR condition, including period-amplitude analysis of individual slow waves. As previously reported in our analysis of REM sleep responses, we found different patterns of changes: (i) progressive decrease in NREM sleep duration and consolidation, (ii) persistent enhancement in NREM delta power especially in the frontal and parietal regions, and (iii) progressive increases in individual slow wave slope and frontal fast oscillation power. These results suggest that multiple sleep-wake regulatory systems exist in a brain region-specific manner, which can be modulated independently, especially in the CSR condition.


Assuntos
Privação do Sono/fisiopatologia , Fases do Sono/fisiologia , Animais , Encéfalo/fisiopatologia , Ritmo Delta/fisiologia , Eletrodos Implantados , Eletroencefalografia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Sono de Ondas Lentas/fisiologia
17.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413301

RESUMO

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Assuntos
Estimulação Acústica , Nível de Alerta/fisiologia , Carboidratos/administração & dosagem , Neurônios/fisiologia , Ração Animal/análise , Animais , Prosencéfalo Basal/fisiologia , Dieta , Camundongos , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
18.
Transl Psychiatry ; 10(1): 29, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32066662

RESUMO

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.


Assuntos
Canais de Cálcio Tipo T , Esquizofrenia , Animais , Eletroencefalografia , Humanos , Camundongos , Esquizofrenia/genética , Sono , Sono REM
19.
J Sleep Res ; 18(2): 238-44, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19645967

RESUMO

Sleep fragmentation is a common symptom in sleep disorders and other medical complaints resulting in excessive daytime sleepiness. The present study seeks to explore the effects of sleep fragmentation on learning and memory in a spatial reference memory task and a spatial working memory (WM) task. Fischer/Brown Norway rats lived in custom treadmills designed to induce locomotor activity every 2 min throughout a 24-h period. Separate rats were either on a treadmill schedule that allowed for consolidated sleep or experienced no locomotor activation. Rats were tested in one of two water maze-based tests of learning and memory immediately following 24 h of sleep interruption. Rats tested in a spatial reference memory task (eight massed acquisition trials) with a 24-h follow-up probe trial to assess memory retention showed no differences in acquisition performance but were impaired on the 24 h retention of the platform location. In contrast, the performance of rats tested in a spatial WM task (delayed matching to position task) was not impaired. Therefore, sleep fragmentation prior to testing impairs the ability to retain spatial reference memories but does not impair spatial reference memory acquisition or spatial WM in Fischer-Norway rats.


Assuntos
Reação de Fuga , Aprendizagem em Labirinto , Memória de Curto Prazo , Orientação , Privação do Sono/psicologia , Distúrbios do Início e da Manutenção do Sono/psicologia , Animais , Masculino , Atividade Motora , Ratos , Retenção Psicológica
20.
Sleep ; 42(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328777

RESUMO

Slow-wave activity (SWA) is an oscillatory neocortical activity occurring in the electroencephalogram delta (δ) frequency range (~0.5-4 Hz) during nonrapid eye movement sleep. SWA is a reliable indicator of sleep homeostasis after acute sleep loss and is involved in memory processes. Evidence suggests that cortical neuronal nitric oxide synthase (nNOS) expressing neurons that coexpress somatostatin (SST) play a key role in regulating SWA. However, previous studies lacked selectivity in targeting specific types of neurons that coexpress nNOS-cells which are activated in the cortex after sleep loss. We produced a mouse model that knocks out nNOS expression in neurons that coexpress SST throughout the cortex. Mice lacking nNOS expression in SST positive neurons exhibited significant impairments in both homeostatic low-δ frequency range SWA production and a recognition memory task that relies on cortical input. These results highlight that SST+/nNOS+ neurons are involved in the SWA homeostatic response and cortex-dependent recognition memory.


Assuntos
Córtex Cerebral/metabolismo , Ritmo Delta/fisiologia , Memória/fisiologia , Óxido Nítrico Sintase Tipo I/deficiência , Reconhecimento Psicológico/fisiologia , Somatostatina/deficiência , Animais , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Sono/fisiologia , Somatostatina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA