Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microbiol Immunol ; 67(9): 422-427, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424105

RESUMO

Multidrug efflux systems of the resistance-nodulation-cell division family play a crucial role in resistance of Pseudomonas aeruginosa to a large variety of antibiotics. Here, we investigated the role of clinically relevant efflux pumps MexAB- OprM, MexCD- OprJ, and MexXY- OprM in resistance against different cationic antimicrobial peptides (AMPs). Our results indicate that a knock-out in efflux pump MexXY-OprM increased susceptibility to some AMPs by two- to eightfold. Our data suggest a contribution of MexXY-OprM in resistance to certain AMPs in P. aeruginosa, which should be considered in the future development of new and highly active antimicrobial peptides to fight multidrug resistant infections.


Assuntos
Proteínas de Membrana Transportadoras , Pseudomonas aeruginosa , Proteínas de Membrana Transportadoras/genética , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
2.
Antimicrob Agents Chemother ; 59(9): 5288-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077259

RESUMO

Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Gramicidina/farmacologia , Polimixina B/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
3.
BMC Microbiol ; 13: 77, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23570569

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an important opportunistic human pathogen and is extremely difficult to treat due to its high intrinsic and adaptive antibiotic resistance, ability to form biofilms in chronic infections and broad arsenal of virulence factors, which are finely regulated. TypA is a GTPase that has recently been identified to modulate virulence in enteric Gram-negative pathogens. RESULTS: Here, we demonstrate that mutation of typA in P. aeruginosa resulted in reduced virulence in phagocytic amoebae and human macrophage models of infection. In addition, the typA mutant was attenuated in rapid cell attachment to surfaces and biofilm formation, and exhibited reduced antibiotic resistance to ß-lactam, tetracycline and antimicrobial peptide antibiotics. Quantitative RT-PCR revealed the down-regulation, in a typA mutant, of important virulence-related genes such as those involved in regulation and assembly of the Type III secretion system, consistent with the observed phenotypes and role in virulence of P. aeruginosa. CONCLUSIONS: These data suggest that TypA is a newly identified modulator of pathogenesis in P. aeruginosa and is involved in multiple virulence-related characteristics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana , GTP Fosfo-Hidrolases/metabolismo , Pseudomonas aeruginosa/enzimologia , Fatores de Virulência/metabolismo , Amoeba/microbiologia , Aderência Bacteriana , Células Cultivadas , Endocitose , GTP Fosfo-Hidrolases/genética , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Virulência/genética
4.
Pathogens ; 10(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578219

RESUMO

Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.

5.
PLoS One ; 14(8): e0221679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461486

RESUMO

Exosomes represent a promising delivery tool for nucleic acid-based pharmaceuticals. They are highly suitable for transporting therapeutic miRNAs to tumor cells, due to their natural membrane components. Further, exosomes are capable of effectively protecting nucleic acids against ribonucleases and enable the delivery of their content through cell membranes. However, no suitable production host for miRNA containing exosomes of non-tumorigenic origin has yet been identified. In this study we engineered an immortalised human amniocyte cell line (CAP® cells), whose exosomes were enriched and characterised. The cell line modifications not only enabled the production of GFP-labelled but also pro-apoptotic miRNA containing exosomes without negative influence on host cell growth. Furthermore, we demonstrated that pro-apoptotic miRNA containing CAP exosomes are taken up by ovarian cancer cells. Strikingly, delivery of functional exosomal miRNA led to downregulation of several reported target genes in the treated tumor cells. In summary, we revealed CAP cells of non-tumorigenic origin as a novel and efficient exosome production host with the potential to produce functional miRNA-loaded exosomes.


Assuntos
Âmnio/citologia , Exossomos/metabolismo , MicroRNAs/metabolismo , Apoptose , Carcinogênese/patologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Exossomos/ultraestrutura , Feminino , Humanos , Neoplasias Ovarianas/patologia , Tetraspanina 30/metabolismo
6.
Front Microbiol ; 8: 2311, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213262

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa is able to survive under a variety of often harmful environmental conditions due to a multitude of intrinsic and adaptive resistance mechanisms, including biofilm formation as one important survival strategy. Here, we investigated the adaptation of P. aeruginosa PAO1 to hypochlorite (HClO), a phagocyte-derived host defense compound and frequently used disinfectant. In static biofilm assays, we observed a significant enhancement in initial cell attachment in the presence of sublethal HClO concentrations. Subsequent LC-MS analyses revealed a strong increase in cyclic-di-GMP (c-di-GMP) levels suggesting a key role of this second messenger in HClO-induced biofilm development. Using DNA microarrays, we identified a 26-fold upregulation of ORF PA3177 coding for a putative diguanylate cyclase (DGC), which catalyzes the synthesis of the second messenger c-di-GMP - an important regulator of bacterial motility, sessility and persistence. This DGC PA3177 was further characterized in more detail demonstrating its impact on P. aeruginosa motility and biofilm formation. In addition, cell culture assays attested a role for PA3177 in the response of P. aeruginosa to human phagocytes. Using a subset of different mutants, we were able to show that both Pel and Psl exopolysaccharides are effectors in the PA3177-dependent c-di-GMP network.

7.
Curr Pharm Des ; 21(1): 67-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25189860

RESUMO

The increasing prevalence of persistent biofilm infections, such as wound infections, chronic lung infections or medical device- related infections, which usually tolerate conventional antibiotic treatment, calls for the development of new therapeutic strategies. To date, antimicrobial peptides (AMPs) are considered as promising agents in the fight against multidrug-resistant bacterial biofilm infections, since many of them have been shown to prevent biofilm formation or even kill preexisting, mature biofilms of several Gram-positive and Gram-negative bacteria in addition to their bactericidal actions to planktonic cells. In this mini-review, we summarize in vitro and in vivo antibiofilm properties of natural and synthetic cationic AMPs against clinically relevant bacterial pathogens. Furthermore, the benefits and challenges in the use of AMPs for the medical treatment of bacterial biofilm infections are discussed.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Prevalência
8.
PLoS One ; 8(12): e82240, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349231

RESUMO

A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.


Assuntos
Catelicidinas/farmacologia , Farmacorresistência Bacteriana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/biossíntese , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Fluoroquinolonas/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes MDR , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA