Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154315

RESUMO

OBJECTIVES: Evaluating the diagnostic feasibility of accelerated pulmonary MR imaging for detection and characterisation of pulmonary nodules with artificial intelligence-aided compressed sensing. MATERIALS AND METHODS: In this prospective trial, patients with benign and malignant lung nodules admitted between December 2021 and December 2022 underwent chest CT and pulmonary MRI. Pulmonary MRI used a respiratory-gated 3D gradient echo sequence, accelerated with a combination of parallel imaging, compressed sensing, and deep learning image reconstruction with three different acceleration factors (CS-AI-7, CS-AI-10, and CS-AI-15). Two readers evaluated image quality (5-point Likert scale), nodule detection and characterisation (size and morphology) of all sequences compared to CT in a blinded setting. Reader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS: Thirty-seven patients with 64 pulmonary nodules (solid n = 57 [3-107 mm] part-solid n = 6 [ground glass/solid 8 mm/4-28 mm/16 mm] ground glass nodule n = 1 [20 mm]) were analysed. Nominal scan times were CS-AI-7 3:53 min; CS-AI-10 2:34 min; CS-AI-15 1:50 min. CS-AI-7 showed higher image quality, while quality remained diagnostic even for CS-AI-15. Detection rates of pulmonary nodules were 100%, 98.4%, and 96.8% for CS-AI factors 7, 10, and 15, respectively. Nodule morphology was best at the lowest acceleration and was inferior to CT in only 5% of cases, compared to 10% for CS-AI-10 and 23% for CS-AI-15. The nodule size was comparable for all sequences and deviated on average < 1 mm from the CT size. CONCLUSION: The combination of compressed sensing and AI enables a substantial reduction in the scan time of lung MRI while maintaining a high detection rate of pulmonary nodules. CLINICAL RELEVANCE STATEMENT: Incorporating compressed sensing and AI in pulmonary MRI achieves significant time savings without compromising nodule detection or characteristics. This advancement holds clinical promise, enhancing efficiency in lung cancer screening without sacrificing diagnostic quality. KEY POINTS: Lung cancer screening by MRI may be possible but would benefit from scan time optimisation. Significant scan time reduction, high detection rates, and preserved nodule characteristics were achieved across different acceleration factors. Integrating compressed sensing and AI in pulmonary MRI offers efficient lung cancer screening without compromising diagnostic quality.

2.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183051

RESUMO

Integrity of the musculoskeletal system is essential for the transfer of muscular contraction force to the associated bones. Tendons and skeletal muscles intertwine, but on a cellular level, the myotendinous junctions (MTJs) display a sharp transition zone with a highly specific molecular adaption. The function of MTJs could go beyond a mere structural role and might include homeostasis of this musculoskeletal tissue compound, thus also being involved in skeletal muscle regeneration. Repair processes recapitulate several developmental mechanisms, and as myotendinous interaction does occur already during development, MTJs could likewise contribute to muscle regeneration. Recent studies identified tendon-related, scleraxis-expressing cells that reside in close proximity to the MTJs and the muscle belly. As the muscle-specific function of these scleraxis positive cells is unknown, we compared the influence of two immortalized mesenchymal stem cell (MSC) lines-differing only by the overexpression of scleraxis-on myoblasts morphology, metabolism, migration, fusion, and alignment. Our results revealed a significant increase in myoblast fusion and metabolic activity when exposed to the secretome derived from scleraxis-overexpressing MSCs. However, we found no significant changes in myoblast migration and myofiber alignment. Further analysis of differentially expressed genes between native MSCs and scleraxis-overexpressing MSCs by RNA sequencing unraveled potential candidate genes, i.e., extracellular matrix (ECM) proteins, transmembrane receptors, or proteases that might enhance myoblast fusion. Our results suggest that musculotendinous interaction is essential for the development and healing of skeletal muscles.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Tenócitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Movimento Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA