Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Vet Res ; 53(1): 111, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527166

RESUMO

Chronic wasting disease (CWD) is a prion disease of cervids including deer, elk, reindeer, and moose. Human consumption of cervids is common, therefore assessing the risk potential of CWD transmission to humans is critical. In a previous study, we tested CWD transmission via intracerebral inoculation into transgenic mice (tg66 and tgRM) that over-expressed human prion protein. Mice screened by traditional prion detection assays were negative. However, in a group of 88 mice screened by the ultrasensitive RT-QuIC assay, we identified 4 tg66 mice that produced inconsistent positive RT-QuIC reactions. These data could be false positive reactions, residual input inoculum or indicative of subclinical infections suggestive of cross species transmission of CWD to humans. Additional experiments were required to understand the nature of the prion seeding activity in this model. In this manuscript, second passage experiments using brains from mice with weak prion seeding activity showed they were not infectious to additional recipient tg66 mice. Clearance experiments showed that input CWD prion seeding activity was eliminated by 180 days in tg66 mice and PrPKO mice, which are unable to replicate prion protein, indicating that the weak positive levels of seeding activity detected at later time points was not likely residual inoculum. The failure of CWD prions to cause disease in tg66 after two sequential passages suggested that a strong species barrier prevented CWD infection of mice expressing human prion protein.


Assuntos
Cervos , Príons , Rena , Doenças dos Roedores , Doença de Emaciação Crônica , Humanos , Animais , Camundongos , Proteínas Priônicas/genética , Príons/genética , Camundongos Transgênicos
2.
J Neuroinflammation ; 18(1): 194, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488805

RESUMO

BACKGROUND: Past experiments studying innate immunity in the central nervous system (CNS) utilized microglia obtained from neonatal mouse brain, which differ developmentally from adult microglia. These differences might impact our current understanding of the role of microglia in CNS development, function, and disease. METHODS: Cytokine protein secretion was compared in ex vivo P3 and adult microglial cultures after exposure to agonists for three different toll-like receptors (TLR4, lipopolysaccharide [LPS]; TLR7, imiquimod [IMQ]; and TLR9, CpG Oligodeoxynucleotide [CpG-ODN] 1585). In addition, changes in inflammatory gene expression in ex vivo adult microglia in response to the TLR agonists was assessed. Furthermore, in vivo experiments evaluated changes in gene expression associated with inflammation and TLR signaling in brains of mice with or without treatment with PLX5622 to reduce microglia. RESULTS: Ex vivo adult and P3 microglia increased cytokine secretion when exposed to TLR4 agonist LPS and to TLR7 agonist IMQ. However, adult microglia decreased expression of numerous genes after exposure to TLR 9 agonist CpG-ODN 1585. In contrast, in vivo studies indicated a core group of inflammatory and TLR signaling genes increased when each of the TLR agonists was introduced into the CNS. Reducing microglia in the brain led to decreased expression of various inflammatory and TLR signaling genes. Mice with reduced microglia showed extreme impairment in upregulation of genes after exposure to TLR7 agonist IMQ. CONCLUSIONS: Cultured adult microglia were more reactive than P3 microglia to LPS or IMQ exposure. In vivo results indicated microglial influences on neuroinflammation were agonist specific, with responses to TLR7 agonist IMQ more dysregulated in mice with reduced microglia. Thus, TLR7-mediated innate immune responses in the CNS appeared more dependent on the presence of microglia. Furthermore, partial responses to TLR4 and TLR9 agonists in mice with reduced microglia suggested other cell types in the CNS can compensate for their absence.


Assuntos
Imunidade Inata , Microglia , Animais , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Receptor 4 Toll-Like , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/agonistas
3.
Neurobiol Dis ; 144: 105057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829029

RESUMO

Tau aggregates consisting of hyperphosphorylated tau fibrils are associated with many neurodegenerative diseases, including Alzheimer's disease, Pick's disease, frontotemporal dementia, and progressive supranuclear palsy. Tau may contribute to the pathogenesis of these diseases, collectively referred to as tauopathies. In human genetic prion diseases, tau aggregates are detected in association with amyloid plaques consisting of prion protein (PrP). However, the role of abnormal tau aggregates in PrP amyloid disease remains unclear. Previously we inoculated scrapie prions into transgenic mice expressing human tau, mouse tau, glycophosphatidylinositol (GPI) anchored PrP, and anchorless PrP. These mice developed both spongiform vacuolar pathology and PrP amyloid pathology, and human tau was detected near PrP amyloid plaques. However, the presence of human tau did not alter the disease tempo or prion-induced neuropathology. In the present study, we tested mice which more closely modeled familial human prion disease. These mice expressed human tau but lacked both mouse tau and GPI-anchored PrP. However, they did produce anchorless PrP, resulting in perivascular PrP amyloid plaques, i.e. cerebral amyloid angiopathy (CAA), without spongiform degeneration. Typical of PrP amyloid disease, the clinical course was very slow in this model. Nevertheless, the accumulation of aggregated, phosphorylated human tau and its association with PrP amyloid plaques failed to alter the timing or course of the clinical disease observed. These data suggest that human tau does not contribute to the pathogenesis of mouse PrP amyloid brain disease and raise the possibility that tau may also not be pathogenic in human PrP amyloid disease.


Assuntos
Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Placa Amiloide/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Scrapie/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Placa Amiloide/patologia , Scrapie/patologia , Proteínas tau/genética
4.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769333

RESUMO

Microglial cells in the central nervous system play important roles in neurodevelopment and resistance to infection, yet microglia can become neurotoxic under some conditions. An early event during prion infection is the activation of microglia and astrocytes in the brain prior to damage or death of neurons. Previous prion disease studies using two different strategies to manipulate signaling through the microglial receptor CSF-1R reported contrary effects on survival from prion disease. However, in these studies, reductions of microglial numbers and function were variable, thus confounding interpretation of the results. In the present work, we used oral treatment with a potent inhibitor of CSF-1R, PLX5622, to eliminate 78 to 90% of microglia from cortex early during the course of prion infection. Oral drug treatment early after infection with the RML scrapie strain significantly accelerated vacuolation, astrogliosis, and deposition of disease-associated prion protein. Furthermore, drug-treated mice had advanced clinical disease requiring euthanasia 31 days earlier than untreated control mice. Similarly, PLX5622 treatment during the preclinical phase at 80 days postinfection with RML scrapie also accelerated disease and resulted in euthanasia of mice 33 days earlier than infected controls. PLX5622 also accelerated clinical disease after infection with scrapie strains ME7 and 22L. Thus, microglia are critical in host defense during prion disease. The early accumulation of PrPSc in the absence of microglia suggested that microglia may function by clearing PrPSc, resulting in longer survival.IMPORTANCE Microglia contribute to many aspects of health and disease. When activated, microglia can be beneficial by repairing damage in the central nervous system (CNS) or they can turn harmful by becoming neurotoxic. In prion and prionlike diseases, the involvement of microglia in disease is unclear. Previous studies suggest that microglia can either speed up or slow down disease. In this study, we infected mice with prions and depleted microglia from the brains of mice using PLX5622, an effective CSF-1R tyrosine kinase inhibitor. Microglia were markedly reduced in brains, and prion disease was accelerated, so that mice needed to be euthanized 20 to 33 days earlier than infected control mice due to advanced clinical disease. Similar results occurred when mice were treated with PLX5622 at 80 days after infection, which was just prior to the start of clinical signs. Thus, microglia are important for removing prions, and the disease is faster when microglia are depleted.


Assuntos
Microglia/citologia , Microglia/efeitos dos fármacos , Compostos Orgânicos/efeitos adversos , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Administração Oral , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Compostos Orgânicos/administração & dosagem , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Scrapie/induzido quimicamente , Scrapie/patologia , Índice de Gravidade de Doença
5.
PLoS Pathog ; 12(4): e1005551, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27046083

RESUMO

Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice.


Assuntos
Neuroglia/patologia , Neurônios/patologia , Proteínas PrPSc/genética , Scrapie/genética , Animais , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPSc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Scrapie/patologia
6.
J Gen Virol ; 98(8): 2190-2199, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28758631

RESUMO

Neuroinflammation is a prominent component of several neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, Parkinson's disease, tauopathies, amyotrophic lateral sclerosis and prion diseases. In such conditions, the ability to decrease neuroinflammation by drug therapy may influence disease progression. Statins have been used to treat hyperlipidemia as well as reduce neuroinflammation and oxidative stress in various tissues. In previous studies, treatment of scrapie-infected mice with the type 1 statins, simvastatin or pravastatin, showed a small beneficial effect on survival time. In the current study, to increase the effectiveness of statin therapy, we treated infected mice with atorvastatin, a type 2 statin that has improved pharmacokinetics over many type 1 statins. Treatments with either simvastatin or pravastatin were tested for comparison. We evaluated scrapie-infected mice for protease-resistant PrP (PrPres) accumulation, gliosis, neuroinflammation and time until advanced clinical disease requiring euthanasia. All three statin treatments reduced total serum cholesterol ≥40 % in mice. However, gliosis and PrPres deposition were similar in statin-treated and untreated infected mice. Time to euthanasia due to advanced clinical signs was not changed in statin-treated mice relative to untreated mice, a finding at odds with previous reports. Expression of 84 inflammatory genes involved in neuroinflammation was also quantitated. Seven genes were reduced by pravastatin, and one gene was reduced by atorvastatin. In contrast, simvastatin therapy did not reduce any of the tested genes, but did slightly increase the expression of Ccl2 and Cxcl13. Our studies indicate that none of the three statins tested were effective in reducing scrapie-induced neuroinflammation or neuropathogenesis.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/imunologia , Pravastatina/administração & dosagem , Sinvastatina/administração & dosagem , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/mortalidade , Scrapie
7.
J Gen Virol ; 97(6): 1481-1487, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26935332

RESUMO

Microglial activation is a hallmark of the neuroimmunological response to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion disease. The CX3C chemokine axis consists of fractalkine (CX3CL1) and its receptor (CX3CR1); these are expressed by neurons and microglia respectively, and are known to modulate microglial activation. In prion-infected mice, both Cx3cr1 and Cx3cl1 are altered, suggesting a role in disease. To investigate the influence of CX3C axis signalling on prion disease, we infected Cx3cr1 knockout (Cx3cr1-KO) and control mice with scrapie strains 22L and RML. Deletion of Cx3cr1 had no effect on development of clinical signs or disease incubation period. In addition, comparison of brain tissue from Cx3cr1-KO and control mice revealed no significant differences in cytokine levels, spongiosis, deposition of disease-associated prion protein or microglial activation. Thus, microglial activation during prion infection did not require CX3C axis signalling.


Assuntos
Microglia/patologia , Doenças Priônicas/genética , Doenças Priônicas/patologia , Receptores de Quimiocinas/genética , Animais , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C , Camundongos , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Receptores de Citocinas/deficiência , Receptores de Citocinas/metabolismo , Receptores de HIV/deficiência , Receptores de HIV/metabolismo , Transdução de Sinais
8.
J Virol ; 89(11): 6022-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810548

RESUMO

UNLABELLED: Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE: Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection.


Assuntos
Doenças Priônicas/patologia , Doenças Priônicas/transmissão , Príons/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Príons/genética , Transgenes
9.
J Virol ; 89(4): 2388-404, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505076

RESUMO

UNLABELLED: Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre- and postclinical stages, we identified 15 previously unreported differentially expressed genes related to inflammation or activation of the STAT signal transduction pathway. Levels for the majority of differentially expressed genes increased with time postinfection. In quantitative immunoblotting experiments of STAT proteins, STAT1α, phosphorylated-STAT1α (pSTAT1α), and pSTAT3 were increased between 94 and 131 days postinfection (p.i.) in brains of mice infected with strain 22L. Furthermore, a select group of STAT-associated genes was increased preclinically during scrapie infection, suggesting early activation of the STAT signal transduction pathway. Comparison of inflammatory markers between mice infected with scrapie strains 22L and RML indicated that the inflammatory responses and gene expression profiles in the brains were strikingly similar, even though these scrapie strains infect different brain regions. The endogenous interleukin-1 receptor antagonist (IL-1Ra), an inflammatory marker, was newly identified as increasing preclinically in our model and therefore might influence scrapie pathogenesis in vivo. However, in IL-1Ra-deficient or overexpressor transgenic mice inoculated with scrapie, neither loss nor overexpression of IL-1Ra demonstrated any observable effect on gliosis, protease-resistant prion protein (PrPres) formation, disease tempo, pathology, or expression of the inflammatory genes analyzed. IMPORTANCE: Prion infection leads to PrPres deposition, gliosis, and neuroinflammation in the central nervous system before signs of clinical illness. Using a scrapie mouse model of prion disease to assess various time points postinoculation, we identified 15 unreported genes that were increased in the brains of scrapie-infected mice and were associated with inflammation and/or JAK-STAT activation. Comparison of mice infected with two scrapie strains (22L and RML), which have dissimilar neuropathologies, indicated that the inflammatory responses and gene expression profiles in the brains were similar. Genes that increased prior to clinical signs might be involved in controlling scrapie infection or in facilitating damage to host tissues. We tested the possible role of the endogenous IL-1Ra, which was increased at 70 days p.i. In scrapie-infected mice deficient in or overexpressing IL-1Ra, there was no observable effect on gliosis, PrPres formation, disease tempo, pathology, or expression of inflammatory genes analyzed.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Scrapie/patologia , Transdução de Sinais , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Gliose/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
10.
Emerg Infect Dis ; 20(5): 833-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24751215

RESUMO

Chronic wasting disease is a prion disease of cervids. Assessment of its zoonotic potential is critical. To evaluate primate susceptibility, we tested monkeys from 2 genera. We found that 100% of intracerebrally inoculated and 92% of orally inoculated squirrel monkeys were susceptible, but cynomolgus macaques were not, suggesting possible low risk for humans.


Assuntos
Doenças dos Macacos/etiologia , Doenças dos Macacos/patologia , Doença de Emaciação Crônica/etiologia , Doença de Emaciação Crônica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Suscetibilidade a Doenças , Genótipo , Macaca , Doenças dos Macacos/diagnóstico , Primatas , Príons/genética , Príons/metabolismo , Saimiri , Doença de Emaciação Crônica/diagnóstico
11.
J Biol Chem ; 287(7): 4628-39, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22179611

RESUMO

Prion diseases or transmissible spongiform encephalopathy diseases are typically characterized by deposition of abnormally folded partially protease-resistant host-derived prion protein (PrPres), which is associated with activated glia and increased release of cytokines. This neuroinflammatory response may play a role in transmissible spongiform encephalopathy pathogenesis. We previously reported that brain homogenates from prion-infected mice induced cytokine protein release in primary astroglial and microglial cell cultures. Here we measured cytokine release by cultured glial cells to determine what factors in infected brain contributed to activation of microglia and astroglia. In assays analyzing IL-12p40 and CCL2 (MCP-1), glial cells were not stimulated in vitro by either PrPres purified from infected mouse brains or prion protein amyloid fibrils produced in vitro. However, significant glial stimulation was induced by clarified scrapie brain homogenates lacking PrPres. This stimulation was greatly reduced both by antibody to cyclophilin A (CyPA), a known mediator of inflammation in peripheral tissues, and by cyclosporine A, a CyPA inhibitor. In biochemical studies, purified truncated CyPA fragments stimulated a pattern of cytokine release by microglia and astroglia similar to that induced by scrapie-infected brain homogenates, whereas purified full-length CyPA was a poor stimulator. This requirement for CyPA truncation was not reported in previous studies of stimulation of peripheral macrophages, endothelial cell cardiomyocytes, and vascular smooth muscle cells. Therefore, truncated CyPA detected in brain following prion infection may have an important role in the activation of brain-derived primary astroglia and microglia in prion disease and perhaps other neurodegenerative or neuroinflammatory diseases.


Assuntos
Astrócitos/enzimologia , Encéfalo/enzimologia , Quimiocina CCL2/metabolismo , Ciclofilina A/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Microglia/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Priônicas/enzimologia , Príons/metabolismo , Animais , Anticorpos/farmacologia , Astrócitos/patologia , Camundongos , Microglia/patologia
12.
J Virol ; 86(19): 10377-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787236

RESUMO

Neurodegenerative diseases are typically associated with an activation of glia and an increased level of cytokines. In our previous studies of prion disease, the cytokine response in the brains of clinically sick scrapie-infected mice was restricted to a small group of cytokines, of which IL-12p40, CCL2, and CXCL10 were present at the highest levels. The goal of our current research was to determine the relationship between cytokine responses, gliosis, and neuropathology during prion disease. Here, in time course studies of C57BL/10 mice intracerebrally inoculated with 22L scrapie, abnormal protease-resistant prion protein (PrPres), astrogliosis, and microgliosis were first detected at 40 days after intracerebral scrapie inoculation. In cytokine studies, IL-12p40 was first elevated by 60 days; CCL3, IL-1ß, and CXCL1 were elevated by 80 days; and CCL2 and CCL5 were elevated by 115 days. IL-12p40 showed the most extensive increase throughout disease and was 30-fold above control levels at the terminal stage. Because of the early onset and dramatic elevation of IL-12p40 during scrapie, we investigated whether IL-12p40 contributed to the development of prion disease neuropathogenesis by using three different scrapie strains (22L, RML, 79A) to infect knockout mice in which the gene encoding IL-12p40 was deleted. We also studied knockout mice lacking IL-12p35, which combines with IL-12p40 to form active IL-12 heterodimers. In all instances, knockout mice did not differ from control mice in survival time, clinical tempo, or levels of spongiosis, gliosis, or PrPres in the brain. Thus, neither IL-12p40 nor IL-12p35 molecules were required for prion disease-associated neurodegeneration or neuroinflammation.


Assuntos
Citocinas/biossíntese , Gliose/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Príons/metabolismo , Scrapie/metabolismo , Animais , Encéfalo/patologia , Quimiocina CCL3/metabolismo , Quimiocina CXCL1/metabolismo , Feminino , Deleção de Genes , Inflamação , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
PLoS Pathog ; 7(9): e1002275, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980292

RESUMO

Transmissible spongiform encephalopathies (TSE) or prion diseases are neurodegenerative disorders associated with conversion of normal host prion protein (PrP) to a misfolded, protease-resistant form (PrPres). Genetic variations of prion protein in humans and animals can alter susceptibility to both familial and infectious prion diseases. The N171S PrP polymorphism is found mainly in humans of African descent, but its low incidence has precluded study of its possible influence on prion disease. Similar to previous experiments of others, for laboratory studies we created a transgenic model expressing the mouse PrP homolog, PrP-170S, of human PrP-171S. Since PrP polymorphisms can vary in their effects on different TSE diseases, we tested these mice with four different strains of mouse-adapted scrapie. Whereas 22L and ME7 scrapie strains induced typical clinical disease, neuropathology and accumulation of PrPres in all transgenic mice at 99-128 average days post-inoculation, strains RML and 79A produced clinical disease and PrPres formation in only a small subset of mice at very late times. When mice expressing both PrP-170S and PrP-170N were inoculated with RML scrapie, dominant-negative inhibition of disease did not occur, possibly because interaction of strain RML with PrP-170S was minimal. Surprisingly, in vitro PrP conversion using protein misfolding cyclic amplification (PMCA), did not reproduce the in vivo findings, suggesting that the resistance noted in live mice might be due to factors or conditions not present in vitro. These findings suggest that in vivo conversion of PrP-170S by RML and 79A scrapie strains was slow and inefficient. PrP-170S mice may be an example of the conformational selection model where the structure of some prion strains does not favor interactions with PrP molecules expressing certain polymorphisms.


Assuntos
Polimorfismo de Nucleotídeo Único , Príons , Dobramento de Proteína , Scrapie , Animais , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética , Príons/metabolismo , Scrapie/genética , Scrapie/metabolismo , Especificidade da Espécie
14.
PLoS One ; 18(11): e0293301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910561

RESUMO

Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Príons/metabolismo , Microglia/metabolismo , Gliose/patologia , Neuroproteção , Camundongos Endogâmicos C57BL , Doenças Priônicas/metabolismo , Encéfalo/metabolismo
15.
J Virol ; 85(4): 1484-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123371

RESUMO

In nature prion diseases are usually transmitted by extracerebral prion infection, but clinical disease results only after invasion of the central nervous system (CNS). Prion protein (PrP), a host-encoded glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein, is necessary for prion infection and disease. Here, we investigated the role of the anchoring of PrP on prion neuroinvasion by studying various inoculation routes in mice expressing either anchored or anchorless PrP. In control mice with anchored PrP, intracerebral or sciatic nerve inoculation resulted in rapid CNS neuroinvasion and clinical disease (154 to 156 days), and after tongue, ocular, intravenous, or intraperitoneal inoculation, CNS neuroinvasion was only slightly slower (193 to 231 days). In contrast, in anchorless PrP mice, these routes resulted in slow and infrequent CNS neuroinvasion. Only intracerebral inoculation caused brain PrPres, a protease-resistant isoform of PrP, and disease in both types of mice. Thus, anchored PrP was an essential component for the rapid neural spread and CNS neuroinvasion of prion infection.


Assuntos
Membrana Celular/metabolismo , Sistema Nervoso Central/fisiopatologia , Príons/metabolismo , Príons/patogenicidade , Scrapie/fisiopatologia , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/fisiopatologia , Nervo Isquiático/metabolismo , Scrapie/metabolismo , Medula Espinal/metabolismo , Língua/metabolismo
16.
PLoS Pathog ; 6(3): e1000800, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20221436

RESUMO

Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer's disease.


Assuntos
Amiloidose/patologia , Doenças Priônicas/patologia , Príons/genética , Príons/metabolismo , Scrapie/patologia , Animais , Membrana Basal/patologia , Membrana Basal/ultraestrutura , Transplante de Tecido Encefálico , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Cerebelo/patologia , Córtex Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neuritos/patologia , Neuritos/ultraestrutura , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/patologia , Neurônios/ultraestrutura , Doenças Priônicas/transmissão , Príons/química , Dobramento de Proteína , Scrapie/transmissão
17.
PLoS One ; 17(10): e0276850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301895

RESUMO

Microglia (MG) are critical to host defense during prion infection, but the mechanism(s) of this neuroprotection are poorly understood. To better examine the influence of MG during prion infection, we reduced MG in the brains of C57BL/10 mice using PLX5622 and assessed prion clearance and replication using multiple approaches that included bioassay, immunohistochemistry, and Real-Time Quaking Inducted Conversion (RT-QuIC). We also utilized a strategy of intermittent PLX5622 treatments to reduce MG and allow MG repopulation to test whether new MG could alter prion disease progress. Lastly, we investigated the influence of MG using tga20 mice, a rapid prion model that accumulates fewer pathological features and less PrPres in the infected brain. In C57BL/10 mice we found that MG were excluded from the inoculation site early after infection, but Iba1 positive infiltrating monocytes/macrophage were present. Reducing MG in the brain prior to prion inoculation did not increase susceptibility to prion infection. Short intermittent treatments with PLX5622 in prion infected C57BL/10 mice after 80 dpi were unsuccessful at altering the MG population, gliosis, or survival. Additionally, MG depletion using PLX5622 in tga20 mice had only a minor impact on prion pathogenesis, indicating that the presence of MG might be less important in this fast model with less prion accumulation. In contrast to the benefits of MG against prion disease in late stages of disease, our current experiments suggest MG do not play a role in early prion pathogenesis, clearance, or replication.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Príons/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Doenças Priônicas/patologia , Encéfalo/metabolismo
18.
Glia ; 59(11): 1684-94, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21766339

RESUMO

Prion protein (PrP) is expressed on a wide variety of cells and plays an important role in the pathogenesis of transmissible spongiform encephalopathies. However, its normal function remains unclear. Mice that do not express PrP exhibit deficits in spatial memory and abnormalities in excitatory neurotransmission suggestive that PrP may function in the glutamatergic synapse. Here, we show that transport of D-aspartate, a nonmetabolized L-glutamate analog, through excitatory amino acid transporters (EAATs) was faster in astrocytes from PrP knockout (PrPKO) mice than in astrocytes from C57BL/10SnJ wild-type (WT) mice. Experiments using EAAT subtype-specific inhibitors demonstrated that in both WT and PrPKO astrocytes, the majority of transport was mediated by EAAT1. Furthermore, PrPKO astrocytes were more effective than WT astrocytes at alleviating L-glutamate-mediated excitotoxic damage in both WT and PrPKO neuronal cultures. Thus, in this in vitro model, PrPKO astrocytes exerted a functional influence on neuronal survival and may therefore influence regulation of glutamatergic neurotransmission in vivo.


Assuntos
Astrócitos/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Príons/fisiologia , Animais , Ácido Aspártico/metabolismo , Western Blotting , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Citometria de Fluxo , Ácido Glutâmico/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Príons/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Sódio/fisiologia
19.
Acta Neuropathol Commun ; 9(1): 17, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33509294

RESUMO

Accumulation of misfolded host proteins is central to neuropathogenesis of numerous human brain diseases including prion and prion-like diseases. Neurons of retina are also affected by these diseases. Previously, our group and others found that prion-induced retinal damage to photoreceptor cells in mice and humans resembled pathology of human retinitis pigmentosa caused by mutations in retinal proteins. Here, using confocal, epifluorescent and electron microscopy we followed deposition of disease-associated prion protein (PrPSc) and its association with damage to critical retinal structures following intracerebral prion inoculation. The earliest time and place of retinal PrPSc deposition was 67 days post-inoculation (dpi) on the inner segment (IS) of cone photoreceptors. At 104 and 118 dpi, PrPSc was associated with the base of cilia and swollen cone inner segments, suggesting ciliopathy as a pathogenic mechanism. By 118 dpi, PrPSc was deposited in both rods and cones which showed rootlet damage in the IS, and photoreceptor cell death was indicated by thinning of the outer nuclear layer. In the outer plexiform layer (OPL) in uninfected mice, normal host PrP (PrPC) was mainly associated with cone bipolar cell processes, but in infected mice, at 118 dpi, PrPSc was detected on cone and rod bipolar cell dendrites extending into ribbon synapses. Loss of ribbon synapses in cone pedicles and rod spherules in the OPL was observed to precede destruction of most rods and cones over the next 2-3 weeks. However, bipolar cells and horizontal cells were less damaged, indicating high selectivity among neurons for injury by prions. PrPSc deposition in cone and rod inner segments and on the bipolar cell processes participating in ribbon synapses appear to be critical early events leading to damage and death of photoreceptors after prion infection. These mechanisms may also occur in human retinitis pigmentosa and prion-like diseases, such as AD.


Assuntos
Cílio Conector dos Fotorreceptores/metabolismo , Proteínas PrPSc/metabolismo , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Morte Celular , Progressão da Doença , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Cílio Conector dos Fotorreceptores/patologia , Cílio Conector dos Fotorreceptores/ultraestrutura , Proteínas PrPSc/administração & dosagem , Células Bipolares da Retina/patologia , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Scrapie/metabolismo , Scrapie/patologia
20.
Viruses ; 13(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34372599

RESUMO

In prion diseases, the spread of infectious prions (PrPSc) is thought to occur within nerves and across synapses of the central nervous system (CNS). However, the mechanisms by which PrPSc moves within axons and across nerve synapses remain undetermined. Molecular motors, including kinesins and dyneins, transport many types of intracellular cargo. Kinesin-1C (KIF5C) has been shown to transport vesicles carrying the normal prion protein (PrPC) within axons, but whether KIF5C is involved in PrPSc axonal transport is unknown. The current study tested whether stereotactic inoculation in the striatum of KIF5C knock-out mice (Kif5c-/-) with 0.5 µL volumes of mouse-adapted scrapie strains 22 L or ME7 would result in an altered rate of prion spreading and/or disease timing. Groups of mice injected with each strain were euthanized at either pre-clinical time points or following the development of prion disease. Immunohistochemistry for PrP was performed on brain sections and PrPSc distribution and tempo of spread were compared between mouse strains. In these experiments, no differences in PrPSc spread, distribution or survival times were observed between C57BL/6 and Kif5c-/- mice.


Assuntos
Encéfalo/virologia , Cinesinas/genética , Doenças Priônicas/fisiopatologia , Príons/patogenicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA