Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 20(4): 69, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941008

RESUMO

BACKGROUND: Metabolomics data is often complex due to the high number of metabolites, chemical diversity, and dependence on sample preparation. This makes it challenging to detect significant differences between factor levels and to obtain accurate and reliable data. To address these challenges, the use of Design of Experiments (DoE) techniques in the setup of metabolomic experiments is crucial. DoE techniques can be used to optimize the experimental design space, ensuring that the maximum amount of information is obtained from a limited sample space. AIM OF REVIEW: This review aims at providing a baseline workflow for applying DoE when generating metabolomics data. KEY SCIENTIFIC CONCEPTS OF REVIEW: The review provides insights into the theory of DoE. The review showcases the theory being put into practice by highlighting different examples DoE being applied in metabolomics throughout the literature, considering both targeted and untargeted metabolomic studies in which the data was acquired using both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry techniques. In addition, the review presents DoE concepts not currently being applied in metabolomics, highlighting these as potential future prospects.


Assuntos
Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Projetos de Pesquisa , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Humanos
2.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37791757

RESUMO

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Assuntos
Alginatos , Bactérias , Humanos , Alginatos/metabolismo , Bactérias/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato
3.
Appl Environ Microbiol ; 88(6): e0241821, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080904

RESUMO

Fish-pathogenic bacteria of the Tenacibaculum genus are a serious emerging concern in modern aquaculture, causing tenacibaculosis in a broad selection of cultured finfish. Data describing their virulence mechanisms are scarce and few means, antibiotic treatment aside, are available to control their proliferation in aquaculture systems. We genome sequenced a collection of 19 putative Tenacibaculum isolates from outbreaks at two aquaculture facilities and tested their susceptibility to treatment with tropodithietic acid (TDA)-producing Roseobacter group probiotics. We found that local outbreaks of Tenacibaculum can involve heterogeneous assemblages of species and strains with the capacity to produce multiple different virulence factors related to host invasion and infection. The probiotic Phaeobacter piscinae S26 proved efficient in killing pathogenic Tenacibaculum species such as T. maritimum, T. soleae, and some T. discolor strains. However, the T. mesophilum and T. gallaicum species exhibit natural tolerance toward TDA and are hence not likely to be easily killed by TDA-producing probiotics. Tolerance toward TDA in Tenacibaculum is likely involving multiple inherent physiological features pertaining to electron and proton transport, iron sequestration, and potentially also drug efflux mechanisms, since genetic determinants encoding such features were significantly associated with TDA tolerance. Collectively, our results support the use of TDA producers to prevent tenacibaculosis; however, their efficacy is likely limited to some Tenacibaculum species. IMPORTANCE A productive and sustainable aquaculture sector is needed to meet the UN sustainable development goals and supply the growing world population with high-protein food sources. A sustainable way to prevent disease outbreaks in the industry is the application of probiotic bacteria that can antagonize fish pathogens in the aquaculture systems. TDA-producing Roseobacter group probiotics have proven efficient in killing important vibrio pathogens and protecting fish larvae against infection, and yet their efficacy against different fish pathogenic species of the Tenacibaculum genus has not been explored. Therefore, we tested the efficacy of such potential probiotics against a collection of different Tenacibaculum isolates and found the probiotic to efficiently kill a subset of relevant strains and species, supporting their use as sustainable disease control measure in aquaculture.


Assuntos
Doenças dos Peixes , Probióticos , Roseobacter , Tenacibaculum , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Peixes/microbiologia , Tenacibaculum/genética
4.
Mar Drugs ; 19(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673118

RESUMO

Genome mining of pigmented Pseudoalteromonas has revealed a large potential for the production of bioactive compounds and hydrolytic enzymes. The purpose of the present study was to explore this bioactivity potential in a potent antibiotic and enzyme producer, Pseudoalteromonas rubra strain S4059. Proteomic analyses (data are available via ProteomeXchange with identifier PXD023249) indicated that a highly efficient chitin degradation machinery was present in the red-pigmented P. rubra S4059 when grown on chitin. Four GH18 chitinases and two GH20 hexosaminidases were significantly upregulated under these conditions. GH19 chitinases, which are not common in bacteria, are consistently found in pigmented Pseudoalteromonas, and in S4059, GH19 was only detected when the bacterium was grown on chitin. To explore the possible role of GH19 in pigmented Pseudoalteromonas, we developed a protocol for genetic manipulation of S4059 and deleted the GH19 chitinase, and compared phenotypes of the mutant and wild type. However, none of the chitin degrading ability, secondary metabolite profile, or biofilm-forming capacity was affected by GH19 deletion. In conclusion, we developed a genetic manipulation protocol that can be used to unravel the bioactive potential of pigmented pseudoalteromonads. An efficient chitinolytic enzyme cocktail was identified in S4059, suggesting that this strain could be a candidate with industrial potential.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Hexosaminidases/metabolismo , Pseudoalteromonas/metabolismo , Quitinases/genética , Genoma Bacteriano , Hexosaminidases/genética , Proteômica , Pseudoalteromonas/genética , Metabolismo Secundário , Regulação para Cima
5.
J Aquat Anim Health ; 32(1): 21-27, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31986229

RESUMO

The genetic diversity of Vibrio anguillarum pJM1-like plasmids was investigated. Plasmids were isolated from 18 V. anguillarum serovar O1 strains collected from different geographic locations and fish species. The plasmids were sequenced and compared with the complete sequence of the published virulence plasmid pJM1. All 18 strains contained pJM1-like plasmids with approximately 65 kbp and all plasmids encoded the virulence genes responsible for the anguibactin iron sequestering system. The plasmids were highly conserved but minor differences were observed in some genes. A single nucleotide polymorphisms (SNPs) analysis showed 0-11 nucleotide variations between each of the 18 plasmids and the pJM1 plasmid. Compared with the sequence of pJM1, nonsynonymous SNPs were identified in fatC, angR, angL, pJM1_p19, and angE. In particular, a mutation found in 15 out of 18 sequenced plasmids in angR has previously been linked to hyperproduction of anguibactin and was found in all the European isolates. However, overall the pJM1-like plasmids isolated from V. anguillarum serovar O1 exhibited a high degree of conservation regardless of their geographical origin or fish species.


Assuntos
DNA Bacteriano/análise , Doenças dos Peixes/microbiologia , Plasmídeos/análise , Vibrioses/veterinária , Vibrio/genética , Animais , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/veterinária , Vibrioses/microbiologia
6.
Beilstein J Org Chem ; 16: 2983-2998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335606

RESUMO

Secondary metabolites provide Bacillus subtilis with increased competitiveness towards other microorganisms. In particular, nonribosomal peptides (NRPs) have an enormous antimicrobial potential by causing cell lysis, perforation of fungal membranes, enzyme inhibition, or disruption of bacterial protein synthesis. This knowledge was primarily acquired in vitro when B. subtilis was competing with other microbial monocultures. However, our understanding of the true ecological role of these small molecules is limited. In this study, we have established soil-derived semisynthetic mock communities containing 13 main genera and supplemented them with B. subtilis P5_B1 WT, the NRP-deficient strain sfp, or single-NRP mutants incapable of producing surfactin, plipastatin, or bacillaene. Through 16S amplicon sequencing, it was revealed that the invasion of NRP-producing B. subtilis strains had no major impact on the bacterial communities. Still, the abundance of the two genera Lysinibacillus and Viridibacillus was reduced. Interestingly, this effect was diminished in communities supplemented with the NRP-deficient strain. Growth profiling of Lysinibacillus fusiformis M5 exposed to either spent media of the B. subtilis strains or pure surfactin indicated the sensitivity of this strain towards the biosurfactant surfactin. Our study provides a more in-depth insight into the influence of B. subtilis NRPs on semisynthetic bacterial communities and helps to understand their ecological role.

7.
Foodborne Pathog Dis ; 15(3): 145-152, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29256637

RESUMO

Campylobacter has been the most commonly reported cause of bacterial diarrheal disease in humans in the European Union since 2005. Most broiler batches at slaughter are colonized with Campylobacter, and the major source of infection is contaminated poultry meat. The aim of this study was to characterize a selection of Campylobacter jejuni and Campylobacter coli isolates from broilers through whole-genome sequencing (WGS). A total of 16 isolates (C. jejuni = 12 and C. coli = 4) from five broiler farms from Catalonia (northeastern Spain) were analyzed. A phylogenetic analysis based on 8420 single-nucleotide polymorphisms showed two main cluster grouping strains by species. Phenotypic resistances to quinolones (100%), tetracycline (81%), streptomycin (75%), erythromycin (56%), and gentamicin (13%) were found. All the isolates carried the C257T point mutation in the subunit A of the DNA gyrase gene (Thr86Ile) conferring resistance to quinolones, while all the isolates showing resistance to tetracycline carried the tet(O) gene. The genes aph(3')-III and aadE conferring resistance to aminoglycosides were identified in the two isolates (one C. jejuni and one C. coli) resistant to streptomycin and gentamicin. The point mutation A2075G on the 23S rDNA conferring high resistance to macrolides was detected in three C. coli isolates. The CmeABC multidrug efflux pump was also detected, both in C. jejuni and C. coli isolates. All C. jejuni and C. coli isolates were positive for most of the 34 virulence-associated genes studied related to motility, chemotaxis, adhesion, and invasion. Interestingly, the wlaN gene involved in the Guillain-Barré syndrome was found in two isolates. The results underline the power of WGS for investigation of virulence, clonality, and antimicrobial resistance in Campylobacter.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , Galinhas/microbiologia , DNA Girase/genética , Farmacorresistência Bacteriana , Doenças das Aves Domésticas/microbiologia , Animais , Anti-Infecciosos/farmacologia , Técnicas de Tipagem Bacteriana/veterinária , Campylobacter coli/genética , Campylobacter coli/patogenicidade , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Estudos Longitudinais , Macrolídeos/farmacologia , Tipagem de Sequências Multilocus/veterinária , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Espanha , Virulência , Sequenciamento Completo do Genoma/veterinária
8.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363959

RESUMO

At present, very little information exists regarding what role the environmental slurry may play as an infection reservoir and/or route of transmission for bovine digital dermatitis (DD), a disease which is a global problem in dairy herds. To investigate whether DD-related bacteria belong to the indigenous microbiota of the dairy herd environment, we used deep amplicon sequencing of the 16S rRNA gene in 135 slurry samples collected from different sites in 22 dairy farms, with and without DD-infected cows. Both the general bacterial populations and digital dermatitis-associated Treponema were targeted in this study. The results revealed significant differences in the bacterial communities between the herds, with only 12 bacterial taxa shared across at least 80% of all the individual samples. These differences in the herd microbiota appeared to reflect mainly between-herd variation. Not surprisingly, the slurry was dominated by ubiquitous gastrointestinal bacteria, such as Ruminococcaceae and Lachnospiraceae Despite the low relative abundance of spirochetes, which ranged from 0 to 0.6%, we were able to detect small amounts of bacterial DNA from DD-associated treponemes in the slurry. However, the DD-associated Treponema spp. were detected only in samples from herds with reported DD problems. These data indicate that treponemes involved in the pathogenesis of DD are not part of the normal environmental microflora in dairy herds without clinical DD and, consequently, that slurry is not a primary reservoir of infection.IMPORTANCE Bovine digital dermatitis (DD), a dermal disease which causes lameness in dairy cattle, is a serious problem worldwide. To control this disease, the infection reservoirs and transmission routes of DD pathogens need to be clarified. The dairy herd slurry may be a pathogen reservoir of DD-associated bacteria. The rationale for the present study was, therefore, to examine whether DD-associated bacteria are always present in slurry or if they are found only in DD-afflicted herds. The results strongly indicated that DD Treponema spp. are not part of the indigenous slurry and, therefore, do not comprise an infection reservoir in healthy herds. This study applied next-generation sequencing technology to decipher the microbial compositions of environmental slurry of dairy herds with and without digital dermatitis.


Assuntos
Bactérias/isolamento & purificação , Doenças dos Bovinos/microbiologia , Dermatite Digital/microbiologia , Reservatórios de Doenças/microbiologia , Microbiota , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Filogenia
9.
Appl Microbiol Biotechnol ; 101(9): 3605-3615, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28204884

RESUMO

We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase but no or limited secretion of galactanase and ß-galactosidase. By screening a library of 158 Bacillus species isolated from feces and soil, we demonstrated that especially strains of Bacillus amyloliquefaciens, Bacillus subtilis, and Bacillus mojavensis have the necessary enzyme profile and thus the capability to degrade polygalacturonan. Using an in vitro porcine gastrointestinal model system, we revealed that specifically strains of B. mojavensis were able to efficiently release galacto-rhamnogalacturonan from potato pulp under simulated gastrointestinal conditions. The work thus demonstrated the feasibility of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets.


Assuntos
Bacillus/enzimologia , Bacillus/metabolismo , Suplementos Nutricionais , Pectinas/metabolismo , Prebióticos , Solanum tuberosum/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Modelos Biológicos , Microbiologia do Solo
10.
Arch Anim Nutr ; 70(1): 44-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26654382

RESUMO

Salmon protein hydrolysates (SPH) from two different rest raw materials were evaluated in diets for weaning piglets. Four experimental diets were included in the study: a diet based on plant protein with soy protein as the main protein source (Diet PP), a diet based on fishmeal in exchange for soy protein (Diet FM) and two diets in which different SPH replaced fishmeal in the FM diet. The experimental diets were fed to piglets from the day of weaning until 32 d postweaning. In addition to the record of performance data, an intestinal sampling for mucosal morphometry and microbiota 16S rRNA gene sequencing were performed at day 11 on a subset of the animals. The duodenal villi absorption area was significantly larger in piglets receiving Diets SPH compared with Diet PP (p < 0.02). A significant positive correlation between duodenal villi height and average daily gain during the first 11 d postweaning was detected. Only small differences in intestinal microbiota community and no differences in growth performance were detected between the experimental diets. To conclude, SPH seem to be an interesting novel protein source in weanling piglets.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Proteínas Alimentares/metabolismo , Hidrolisados de Proteína/metabolismo , Salmo salar , Sus scrofa/fisiologia , Ração Animal/análise , Animais , Feminino , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/anatomia & histologia , Intestino Delgado/microbiologia , Masculino , Distribuição Aleatória , Sus scrofa/anatomia & histologia , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/microbiologia
11.
Appl Environ Microbiol ; 81(5): 1668-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527557

RESUMO

Postweaning diarrhea (PWD) in pigs is a leading cause of economic loss in pork production worldwide. The current practice of using antibiotics and zinc to treat PWD is unsustainable due to the potential of antibiotic resistance and ecological disturbance, and novel methods are required. In this study, an in vitro model was used to test the possibility of producing prebiotic fiber in situ in the gastrointestinal (GI) tract of the piglet and the prebiotic activity of the resulting fiber in the terminal ileum. Soluble fiber was successfully produced from potato pulp, an industrial waste product, with the minimal enzyme dose in a simulated upper GI tract model extracting 26.9% of the initial dry matter. The fiber was rich in galactose and galacturonic acid and was fermented at 2.5, 5, or 10 g/liter in a glucose-free medium inoculated with the gut contents of piglet terminal ileum. Fermentations of 5 g/liter inulin or 5 g/liter of a purified potato fiber were used as controls. The fibers showed high fermentability, evident by a dose-dependent drop in pH and an increase in the organic acid content, with lactate in particular being increased. Deep sequencing showed a significant increase in the numbers of Lactobacillus and Veillonella organisms and an insignificant increase in the numbers of Clostridium organisms as well as a decrease in the numbers of Streptococcus organisms. Multivariate analysis showed clustering of the treatment groups, with the group treated with purified potato fiber being clearly separated from the other groups, as the microbiota composition was 60% Lactobacillus and almost free of Clostridium. For animal studies, a dosage corresponding to the 5-g/liter treatment is suggested.


Assuntos
Aditivos Alimentares/metabolismo , Pectinas/metabolismo , Prebióticos , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Fermentação , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Modelos Teóricos , Solanum tuberosum/química , Suínos , Desmame
12.
Appl Microbiol Biotechnol ; 99(10): 4245-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25434812

RESUMO

Enzymatic conversion of pectinaceous biomasses such as potato and sugar beet pulp at high temperatures is advantageous as it gives rise to lower substrate viscosity, easier mixing, and increased substrate solubility and lowers the risk of contamination. Such high-temperature processing requires development of thermostable enzymes. Talaromyces stipitatus was found to secrete endo-1,4-ß-galactanase when grown on sugar beet pectin as sole carbon source. The mature protein contained 353 AA and the MW was estimated to 36.5 kDa. It was subjected to codon optimization and produced in Pichia pastoris in 2 l scale yielding 5.3 g. The optimal reaction condition for the endo-1,4-ß-galactanase was determined to be 46 °C at pH 4.5 at which the specific activity was estimated to be 6.93 µmol/min/mg enzyme with half-lives of 13 and 2 min at 55 and 60 °C, respectively. For enhancement of the half-life of TSGAL, nine single amino acid residues were selected for site-directed mutagenesis on the basis of semi-rational design. Of these nine mutants, G305A showed half-lives of 114 min at 55 °C and 15 min at 60 °C, respectively. This is 8.6-fold higher than that of the TSGAL at 55 °C, whereas the other mutants displayed moderate positive to negative changes in their half-lives.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Talaromyces/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pichia/genética , Pichia/metabolismo , Engenharia de Proteínas , Especificidade por Substrato , Talaromyces/química , Talaromyces/genética
13.
BMC Vet Res ; 11: 139, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099928

RESUMO

BACKGROUND: In recent years, new neonatal porcine diarrhoea (NNPD) of unknown aetiology has emerged in Denmark. NNPD affects piglets during the first week of life and results in impaired welfare, decreased weight gain, and in the worst-case scenario death. Commonly used preventative interventions such as vaccination or treatment with antibiotics, have a limited effect on NNPD. Previous studies have investigated the clinical manifestations, histopathology, and to some extent, microbiological findings; however, these studies were either inconclusive or suggested that Enterococci, possibly in interaction with Escherichia coli, contribute to the aetiology of NNPD. This study examined ileal and colonic luminal contents of 50 control piglets and 52 NNPD piglets by means of the qPCR-based Gut Microbiotassay and 16 samples by 454 sequencing to study the composition of the bacterial gut microbiota in relation to NNPD. RESULTS: NNPD was associated with a diminished quantity of bacteria from the phyla Actinobacteria and Firmicutes while genus Enterococcus was more than 24 times more abundant in diarrhoeic piglets. The number of bacteria from the phylum Fusobacteria was also doubled in piglets suffering from diarrhoea. With increasing age, the gut microbiota of NNPD affected piglet and control piglets became more diverse. Independent of diarrhoeic status, piglets from first parity sows (gilts) possessed significantly more bacteria from family Enterobacteriaceae and species E. coli, and fewer bacteria from phylum Firmicutes. Piglets born to gilts had 25 times higher odds of having NNPD compared with piglets born to multiparous sows. Finally, the co-occurrence of genus Enterococcus and species E. coli contributed to the risk of having NNPD. CONCLUSION: The results of this study support previous findings that points towards genus Enterococcus and species E. coli to be involved in the pathogenesis of NNPD. Moreover, the results indicate that NNPD is associated with a disturbed bacterial composition and larger variation between the diarrhoeic piglets.


Assuntos
Animais Recém-Nascidos , Bactérias/isolamento & purificação , Diarreia/veterinária , Trato Gastrointestinal/microbiologia , Doenças dos Suínos/etiologia , Animais , Bactérias/classificação , Biologia Computacional , Diarreia/etiologia , Análise de Componente Principal , Suínos , Doenças dos Suínos/microbiologia
14.
Fish Shellfish Immunol ; 40(2): 624-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25150450

RESUMO

This study investigated the influence of the rainbow trout (Oncorhynchus mykiss) commensal intestinal microbiota in connection to an experimental Yersina ruckeri infection, the causative agent of enteric redmouth disease. One marine and one plant diet was administered to two different groups of rainbow trout. The plant-based diet gave rise to an intestinal microbiota dominated by the genera Streptococcus, Leuconostoc and Weissella from phylum Firmicutes whereas phylum Proteobacteria/Bacteroidetes/Actinobacteria dominated the community in the marine fed fish. In connection to the Y. ruckeri bath challenge there was no effect of the diet type on the cumulative survival, but the number of Y. ruckeri positive fish as measured by plate count and the number of fish with a 'high' number of reads belonging to genus Yersinia as measured by 16S rRNA next-generation sequencing was higher for marine diet fed fish. Furthermore, the two experimental groups of fish showed a differential immune response, where Y. ruckeri challenged marine fed fish had a higher transcription of IL-1ß and MBL-2 relative to challenged plant diet fed fish. The data suggest that the plant diet gave rise to a prebiotic effect favouring the presence of bacterial taxons proving protective in connection to bath challenge by Y. ruckeri.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata , Microbiota , Oncorhynchus mykiss , Yersiniose/veterinária , Yersinia ruckeri/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Doenças dos Peixes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Intestinos/imunologia , Intestinos/microbiologia , Oncorhynchus mykiss/genética , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Yersiniose/imunologia , Yersiniose/microbiologia
15.
Heliyon ; 10(17): e36998, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296015

RESUMO

We introduce NMR-Onion, an open-source, computationally efficient algorithm based on Python and PyTorch, designed to facilitate the automatic deconvolution of 1D NMR spectra. NMR-Onion features two innovative time-domain models capable of handling asymmetric non-Lorentzian line shapes. Its core components for resolution-enhanced peak detection and digital filtering of user-specified key regions ensure precise peak prediction and efficient computation. The NMR-Onion framework includes three built-in statistical models, with automatic selection via the BIC criterion. Additionally, NMR-Onion assesses the repeatability of results by evaluating post-modeling uncertainty. Using the NMR-Onion algorithm helps to minimize excessive peak detection.

16.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490742

RESUMO

Our understanding of the role of secondary metabolites in microbial communities is challenged by intrinsic limitations of culturing bacteria under laboratory conditions and hence cultivation independent approaches are needed. Here, we present a protocol termed Secondary Metabolite FISH (SecMet-FISH), combining advantages of gene-targeted fluorescence in situ hybridization (geneFISH) with in-solution methods (in-solution FISH) to detect and quantify cells based on their genetic capacity to produce secondary metabolites. The approach capitalizes on the conserved nature of biosynthetic gene clusters (BGCs) encoding adenylation (AD) and ketosynthase (KS) domains, and thus selectively targets the genetic basis of non-ribosomal peptide and polyketide biosynthesis. The concept relies on the generation of amplicon pools using degenerate primers broadly targeting AD and KS domains followed by fluorescent labeling, detection, and quantification. Initially, we obtained AD and KS amplicons from Pseuodoalteromonas rubra, which allowed us to successfully label and visualize BGCs within P. rubra cells, demonstrating the feasibility of SecMet-FISH. Next, we adapted the protocol and optimized it for hybridization in both Gram-negative and Gram-positive bacterial cell suspensions, enabling high-throughput single cell analysis by flow cytometry. Ultimately, we used SecMet-FISH to successfully distinguish secondary metabolite producers from non-producers in a five-member synthetic community.


Assuntos
Família Multigênica , Hibridização in Situ Fluorescente/métodos , Citometria de Fluxo
17.
Anim Microbiome ; 6(1): 44, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107841

RESUMO

Microbiome assembly critically impacts the ability of hosts to access beneficial symbiont functions. Fungus-farming termites have co-evolved with a fungal cultivar as a primary food source and complex gut microbiomes, which collectively perform complementary degradation of plant biomass. A large subset of the bacterial community residing within termite guts are inherited (vertically transmitted) from parental colonies, while the fungal symbiont is, in most termite species, acquired from the environment (horizontally transmitted). It has remained unknown how the gut microbiota sustains incipient colonies prior to the acquisition of the fungal cultivar, and how, if at all, bacterial contributions are modulated by fungus garden establishment. Here, we test the latter by determining the composition and predicted functions of the gut microbiome using metabarcoding and shotgun metagenomics, respectively. We focus our functional predictions on bacterial carbohydrate-active enzyme and nitrogen cycling genes and verify compositional patterns of the former through enzyme activity assays. Our findings reveal that the vast majority of microbial functions are encoded in the inherited microbiome, and that the establishment of fungal gardens incurs only minor modulations of predicted bacterial capacities for carbohydrate and nitrogen metabolism. While we cannot rule out that other symbiont functions are gained post-fungus garden establishment, our findings suggest that fungus-farming termite hosts are equipped with a near-complete set of gut microbiome functions at the earliest stages of colony life. This inherited, incipient bacterial microbiome likely contributes to the high extent of functional specificity and coevolution observed between termite hosts, gut microbiomes, and the fungal cultivar.

18.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38874164

RESUMO

The role of antagonistic secondary metabolites produced by Pseudomonas protegens in suppression of soil-borne phytopathogens has been clearly documented. However, their contribution to the ability of P. protegens to establish in soil and rhizosphere microbiomes remains less clear. Here, we use a four-species synthetic community (SynCom) in which individual members are sensitive towards key P. protegens antimicrobial metabolites (DAPG, pyoluteorin, and orfamide A) to determine how antibiotic production contributes to P. protegens community invasion and to identify community traits that counteract the antimicrobial effects. We show that P. protegens readily invades and alters the SynCom composition over time, and that P. protegens establishment requires production of DAPG and pyoluteorin. An orfamide A-deficient mutant of P. protegens invades the community as efficiently as wildtype, and both cause similar perturbations to community composition. Here, we identify the microbial interactions underlying the absence of an orfamide A mediated impact on the otherwise antibiotic-sensitive SynCom member, and show that the cyclic lipopeptide is inactivated and degraded by the combined action of Rhodococcus globerulus D757 and Stenotrophomonas indicatrix D763. Altogether, the demonstration that the synthetic community constrains P. protegens invasion by detoxifying its antibiotics may provide a mechanistic explanation to inconsistencies in biocontrol effectiveness in situ.


Assuntos
Biotransformação , Pseudomonas , Metabolismo Secundário , Microbiologia do Solo , Pseudomonas/metabolismo , Pseudomonas/genética , Rizosfera , Microbiota , Interações Microbianas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fenóis , Floroglucinol/análogos & derivados , Pirróis
19.
Comp Med ; 74(2): 55-69, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508697

RESUMO

Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Colite Ulcerativa/microbiologia , Humanos , Camundongos , Feminino , Vida Livre de Germes , Sulfato de Dextrana/toxicidade , Fezes/microbiologia , Gravidez , Masculino , Modelos Animais de Doenças , Transplante de Microbiota Fecal
20.
Bioinform Adv ; 3(1): vbad111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655178

RESUMO

Motivation: As previously described, amplicon analysis of the bacterial 16S gene has several limitations owing to fundamental characteristics of both the 16S gene and technological restrictions. Previously, RibDif was introduced to help quantify these limitations by detailed analysis of a given genera and the 16S gene profile of its members, notably multiplicity and divergence of 16S alleles within genomes as well as shared alleles between species. Apart from using amplicon analysis for only the 16S gene, amplicons derived from genus-specific genes or even functional genes are increasingly being utilized. Moreover, long-read technologies are progressively being used to sequence longer amplicons, and since these inherently contain more information, they may likely alleviate the issues proposed in RibDif. Results: Taking these phenomena into account, we here propose RibDif2. RibDif2 retains the 16S-optimized functionality of the original RibDif but can now run any set of primers on any part of the genome in any set of organisms, be it prokaryote, eukaryote, or archaea. We demonstrate this new functionality by showing full species resolution of Pseudoalteromonas using complete rRNA-operon amplicons, as well as selection of optimally discriminatory primers for Staphylococcus and Pseudomonas. Moreover, we show a potential bias toward terrestrial bacteria relative to marine ones for primers amplifying biosynthetic gene clusters and lastly suggest optimal primers to differentiate the members of the insect genus Drosophila. We believe that RibDif2 will facilitate the work of all scientists using amplicon sequencing, especially in the era of long-read sequencing. Availability and implementation: Ribdif2 is freely available at https://github.com/Rob-murphys/ribdif.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA