Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 20(27): e2303421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533978

RESUMO

Materials with tunable negative electromagnetic performance, i.e., where dielectric permittivity becomes negative, have long been pursued in materials research due to their peculiar electromagnetic (EM) characteristics. Here, this promising feature is reported in materials on the case of plasma-synthesized nitrogen-doped graphene sheets with tunable permittivity over a wide (1-40 GHz) frequency range. Selectively incorporated nitrogen atoms in a graphene scaffold tailor the electronic structure in a way that provides an ultra-low energy (0.5-2 eV) 2D surface plasmon excitation, leading to subunitary and negative dielectric constant values in the Ka-band, from 30 up to 40 GHz. By allowing the tailoring of structures at atomic scale, this novel plasma-based approach creates a new paradigm for designing 2D nanomaterials like nanocarbons with controllable and tunable permittivity, opening a path to the next generation of 2D metamaterials.

2.
Chemistry ; 30(24): e202303912, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38319524

RESUMO

Adsorption of metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining the advantages of homogeneous and heterogeneous catalysis. To avoid the "surface trans-effect" a dome-shaped molybdenum(0) tricarbonyl complex supported by an tolylazacalix[3](2,6)pyridine ligand is synthesized. This vacuum-evaporable complex both activates CO and reacts with molecular oxygen (O2) to form a Mo(VI) trioxo complex which in turn is capable of catalytically mediating oxygen transfer. The molybdenum tricarbonyl- and trioxo complexes are investigated in the solid state, in homogeneous solution and on noble metal surfaces (Cu, Au) employing a range of spectroscopic and analytical methods.

3.
Phys Chem Chem Phys ; 23(13): 7961-7973, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33459737

RESUMO

The diffusion of hydrogen adsorbed inside layered MoS2 crystals has been studied by means of quasi-elastic neutron scattering, neutron spin-echo spectroscopy, nuclear reaction analysis, and X-ray photoelectron spectroscopy. The neutron time-of-flight and neutron spin-echo measurements demonstrate fast diffusion of hydrogen molecules parallel to the basal planes of the two dimensional crystal planes. At room temperature and above, this intra-layer diffusion is of a similar speed to the surface diffusion that has been observed in earlier studies for hydrogen atoms on Pt surfaces. A significantly slower hydrogen diffusion was observed perpendicular to the basal planes using nuclear reaction analysis.

4.
J Phys Chem A ; 125(7): 1661-1667, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33577326

RESUMO

The combination of organic chemistry and chemical vapor deposition enables a unique way to deposit conformal, high quality polymer thin films from the vapor phase. Particularly initiated chemical vapor deposition (iCVD) has recently shown its great potential in many different application fields. With the ever-increasing demands on the process, the need for additional process refinement is also growing. In this study the enhancement of the iCVD process by in-situ mass spectrometry is presented. The approach enables insight into real-time reaction kinetics during the deposition process as well as identification of reaction pathways. Furthermore, the composition of the gas phase can be precisely controlled and spontaneously adjusted if necessary. Particularly the deposition of thin films with thicknesses in the low nanometer range and the deposition of copolymers can benefit from this approach. The presented approach enables enhanced process control as well as the ability to perform extensive kinetic studies.

5.
Chemistry ; 26(2): 485-501, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31660639

RESUMO

Self-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs. Different concepts, in particular self-dilution and rigid biaryl backbones, have been investigated. The required SH-functionalized azobenzene glycoconjugates were synthesized through a modular approach, and the respective glyco-SAMs were fabricated on Au(111). Their photoswitching properties have been extensively investigated by applying a powerful set of methods (IRRAS, XPS, and NEXAFS). Indeed, the combination of tailor-made biaryl-azobenzene glycosides and suitable diluent molecules led to photoswitchable glyco-SAMs with a significantly enhanced and unprecedented switching capacity.

6.
Nanotechnology ; 31(39): 395604, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32521529

RESUMO

The need for 2D vertical graphene nanosheets (VGNs) is driven by its great potential in diverse energy, electronics, and sensor applications, wherein many cases a low-temperature synthesis is preferred due to requirements of the manufacturing process. Unfortunately, most of today's known methods, including plasma, require either relatively high temperatures or high plasma powers. Herein, we report on a controllable synthesis of VGNs at a pushed down low-temperature boundary for synthesis, the low temperatures (450 °C) and low plasma powers (30 W) using capacitively coupled plasma (CCP) driven by radio-frequency power at 13.56 MHz. The strategies implemented also include unrevealing the role of Nickel (Ni) catalyst thin film on the substrates (Si/Al). It was found that the Ni catalyst on Si/Al initiates the nucleation/growth of VGNs at 450 °C in comparison to the substrates without Ni catalyst. With increasing temperature, the graphene nanosheets become bigger in size, well-structured and well separated. The role of Ni catalysts is hence to boost the growth rate, density, and quality of the growing VGNs. Furthermore, this CCP method can be used to synthesize VGNs at the lowest temperatures possible so far on a variety of substrates and provide new opportunities in the practical application of VGNs.

7.
Angew Chem Int Ed Engl ; 58(20): 6574-6578, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30793824

RESUMO

We report on a very unusual case of surface catalysis involving azobenzenes in contact with a Au(111) surface. A rate acceleration of the cis-trans isomerization on gold up to a factor of 1300 compared to solution is observed. By using carefully designed molecular frameworks, the electronic coupling to the surface can be systematically tuned. The isomerization kinetics of molecules with very weak coupling to the metal is similar to that found in solution. For their counterparts with strong coupling, the relaxation rate is shown to depend on the spin-density distribution in the triplet states of the molecules. This suggests that an intersystem crossing is involved in the relaxation process. Aside from their impact on catalytic processes, these effects could be used to trigger reactions over long distances.

8.
Chemistry ; 24(42): 10732-10744, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693736

RESUMO

Activating small molecules with transition metal complexes adsorbed on metal surfaces is a novel approach combining aspects of homogeneous and heterogeneous catalysis. In order to study the influence of an Au(111) substrate on the activation of the small-molecule ligand carbon monoxide, a molybdenum tricarbonyl complex containing a PN3 P pincer ligand was synthesized and investigated in the bulk, in solution, and adsorbed on an Au(111) surface. By means of a platform approach, a perpendicular orientation of the molybdenum complex was achieved and confirmed by IRRAS and NEXAFS. By using vibrational spectroscopy (IR, Raman, IRRAS) coupled to DFT calculations, the influence of the metal substrate on the activation of the CO ligands bound to the molybdenum complex was determined. The electron-withdrawing behavior of gold causes an overall shift of the CO stretching vibrations to higher frequencies, which is partly compensated by dynamic charge transfer from the substrate to the molybdenum center, which increases its (dynamic) polarizability.

9.
J Adhes Dent ; 20(4): 289-297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30206571

RESUMO

PURPOSE: To evaluate the influence of contamination and plasma treatment on the bond strength of resin to zirconia ceramic. MATERIALS AND METHODS: After immersion in saliva or the use of a silicone disclosing agent, polished and airborne-particle abraded zirconia specimens were cleaned either ultrasonically in 99% isopropanol or with nonthermal plasma. Uncontaminated zirconia specimens were used as control. For chemical analysis, specimens of all groups were examined with x-ray photoelectron spectroscopy (XPS). Plexiglas tubes filled with composite resin were bonded to ceramic specimens with a phosphate-monomer-containing luting resin. The influence of contamination and cleaning methods on ceramic bond durability was examined by tensile testing after 3 and 150 days of water storage, with an additional 37,500 thermocycles during the 150-day storage. RESULTS: XPS showed an increase in the amount of oxygen and a decrease in the amount of carbon on the zirconia surface after plasma treatment. After contamination with silicone, XPS revealed a high amount of Si residue on the surface that none of the investigated cleaning processes could completely remove. The tensile bond strength to uncontaminated zirconia ceramic was durable, but was significantly reduced by contamination. CONCLUSION: Plasma treatment was effective in removing salivary contamination but not silicone disclosing agent residue from the bonding surface of zirconia.


Assuntos
Porcelana Dentária , Cimentos de Resina , Zircônio , Colagem Dentária , Análise do Estresse Dentário , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Resistência à Tração
10.
Nanotechnology ; 28(17): 175703, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28294956

RESUMO

Alloy nanoparticles with variable compositions add a new dimension to nanoscience and have many applications. Here we suggest a novel approach for the fabrication of variable composition alloy nanoparticles that is based on a Haberland type gas aggregation cluster source with a custom-made multicomponent target for magnetron sputtering. The approach, which was demonstrated here for gold-rich AgAu nanoparticles, combines a narrow nanoparticle size distribution with in operando variation of composition via the gas pressure as well as highly efficient usage of target material. The latter is particularly attractive for precious metals. Varying argon pressure during deposition, we achieved in operando changes of AgAu alloy nanoparticle composition of more than 13 at%. The alloy nanoparticles were characterized by x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy. The characteristic plasmon resonances of multilayer nanoparticle composites were analyzed by UV-vis spectroscopy. Tuning of the number of particles per unit area (particle densities) within individual layers showed an additional degree of freedom to tailor the optical properties of multilayer nanocomposites. By extension of this technique to more complex systems, the presented results are expected to encourage and simplify further research based on plasmonic multi-element nanoparticles. The present method is by no means restricted to plasmonics or nanoparticle based applications, but is also highly relevant for conventional magnetron sputtering of alloys and can be extended to in operando control of alloy concentration by magnetic field.

11.
Angew Chem Int Ed Engl ; 55(27): 7650-4, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27125328

RESUMO

The on-surface synthesis of covalent organic nanosheets driven by reactive metal surfaces leads to strongly adsorbed organic nanostructures, which conceals their intrinsic properties. Hence, reducing the electronic coupling between the organic networks and commonly used metal surfaces is an important step towards characterization of the true material. We demonstrate that post-synthetic exposure to iodine vapor leads to the intercalation of an iodine monolayer between covalent polyphenylene networks and Ag(111) surfaces. The experimentally observed changes from surface-bound to detached nanosheets are reproduced by DFT simulations. These findings suggest that the intercalation of iodine provides a material that shows geometric and electronic properties substantially closer to those of the freestanding network.

12.
Phys Chem Chem Phys ; 17(26): 17053-62, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26063248

RESUMO

Triazatriangulenium (TATA) platform molecules allow the preparation of functionalized surfaces with well-defined lateral spacings of freestanding functional groups. Using scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy and complementary density functional theory calculations the chemical composition and orientational order of adlayers of functionalized azobenzene containing TATA platform molecules were characterized. According to these studies the molecules are chemically intact on the surface after self-assembly from solution and exhibit a well-defined adsorption geometry where the azobenzene units are oriented almost perpendicular to the surface.

13.
Phys Chem Chem Phys ; 16(41): 22643-50, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25242068

RESUMO

Spectroscopic evidence of a reversible, photoinduced trans ↔ cis photoisomerization is provided for an azobenzene-functionalized triazatriangulene (TATA) platform on Au(111). As shown by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), these molecules form a well-ordered self-assembled monolayer (SAM) on Au(111). The surface-adsorbed azo-TATA platforms are also investigated by infrared reflection absorption spectroscopy (IRRAS); a methoxy marker group at the upper phenyl ring of the azo moiety is employed to monitor the switching state. The IRRAS data are analyzed by comparison with theoretical and transmission IR spectra as well as bulk and surface-enhanced Raman spectroscopic (SERS) data. IRRAS shows that the methoxy group is oriented perpendicular to the surface in trans- and tilted with respect to the surface normal in cis-configuration. This indicates that the photoswitching capability of the azobenzene moieties is retained on the gold surface. The lifetime of the cis-configuration is, however, reduced by a factor of ∼10(3) with respect to the homogeneous solution.

14.
Lasers Med Sci ; 29(5): 1633-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24691717

RESUMO

Polyetheretherketone (PEEK) is considered as a substitute for metallic implant materials due to its extremely low elastic modulus (3-4 GPa). Despite its good mechanical properties, PEEK exhibits a slow integration with the bone tissue due to its relatively inert surface and low biocompatibility. We introduced a dual modification method, which combines the laser and plasma surface treatments to achieve hierarchically patterned PEEK surfaces. While the plasma treatment leads to nanotopography, the laser treatment induces microstructures over the PEEK surface. On the other hand, plasma and laser treatments induce inhomogeneity in the surface chemistry in addition to the tailored surface topography. Therefore, we coated the structured PEEK surfaces with a thin alumina layer by pulsed laser deposition (PLD) to get identical surface chemistry on each substrate. Such alumina-coated PEEK surfaces are used as a model to investigate the effect of the surface topography on the wetting independent from the surface chemistry. Prepared surfaces bring advantages of enhanced wetting, multiscaled topography, proven biocompatibility (alumina layer), and low elastic modulus (PEEK as substrate), which together may trigger the use of PEEK in bone and other implant applications.


Assuntos
Cetonas/química , Polietilenoglicóis/química , Próteses e Implantes , Benzofenonas , Lasers , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Polímeros , Espectrometria por Raios X , Molhabilidade
15.
Langmuir ; 29(27): 8534-43, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23751117

RESUMO

Functionalization of surfaces with spin crossover complexes is an intensively studied topic. Starting from dinuclear iron(III)-salten complexes [Fe(salten)(pyS)]2(BPh4)2 and [Fe(thiotolylsalten)(NCS)]2 with disulfide-containing bridging ligands, corresponding mononuclear complexes [Fe(salten)(pyS)](+) and [Fe(thiotolylsalten)(NCS)] are covalently attached to Au(111) surfaces (pySH, pyridinethiol; salten, bis(3-salicylidene-aminopropyl)amine). The adsorbed monolayers are investigated by infrared reflection absorption spectroscopy (IRRAS) in combination with X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). Comparison of the surface vibrational spectra with bulk data allows us to draw conclusions with respect to the geometry of the adsorbed complexes. An anomaly is observed in the spectra of the surface-adsorbed monolayer of [Fe(salten)(pyS)](+), which suggests that the salten ligand is partially decoordinated from the Fe(III) center and one of its phenolate arms binds to the Au(111) surface. For complex [Fe(thiotolylsalten)(NCS)] that is bound to the Au(111) surface via a thiolate-functionalized salten ligand, this anomaly is not observed, which indicates that the coordination sphere of the complex in the bulk is retained on the surface. The implications of these results with respect to the preparation of surface-adsorbed monolayers of functional transition-metal complexes are discussed.


Assuntos
Etilenodiaminas/química , Compostos Férricos/química , Ouro/química , Compostos de Sulfidrila/química , Estrutura Molecular , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Espectroscopia por Absorção de Raios X , Raios X
16.
Phys Chem Chem Phys ; 15(46): 20272-80, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24166534

RESUMO

Mono- and multilayers of the molecular photoswitch azobenzene were adsorbed on two layered transition-metal dichalcogenides, semiconducting HfS2 and metallic TiTe2, at temperatures of 80-120 K and investigated in situ using valence-band and core-level photoelectron spectroscopy as well as near-edge X-ray absorption fine structure spectroscopy. The spectroscopic results indicate similar growth modes on the two substrates. In the monolayer systems, the azobenzene molecules tend to lie flat on the surface with average tilt angles of <15°, whereas the multilayer systems show a larger average tilt angle of 35-45°, depending on substrate surface conditions. The chemical environment of azobenzene, as investigated by XPS, does not change significantly from mono- to multilayers suggesting weak adsorbate-substrate coupling for the molecular layer that forms the interface with the substrate. Irradiation with ultraviolet light with a wavelength of 365 nm leads to a partial rearrangement of the adsorbed azobenzene molecules with a trans-to-cis conversion of up to 35%.

17.
Polymers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771827

RESUMO

Metal oxide gas sensors are of great interest for applications ranging from lambda sensors to early hazard detection in explosive media and leakage detection due to their superior properties with regard to sensitivity and lifetime, as well as their low cost and portability. However, the influence of ambient gases on the gas response, energy consumption and selectivity still needs to be improved and they are thus the subject of intensive research. In this work, a simple approach is presented to modify and increase the selectivity of gas sensing structures with an ultrathin polymer thin film. The different gas sensing surfaces, CuO, Al2O3/CuO and TiO2 are coated with a conformal < 30 nm Poly(1,3,5,7-tetramethyl-tetravinyl cyclotetrasiloxane) (PV4D4) thin film via solvent-free initiated chemical vapor deposition (iCVD). The obtained structures demonstrate a change in selectivity from ethanol vapor to 2-propanol vapor and an increase in selectivity compared to other vapors of volatile organic compounds. In the case of TiO2 structures coated with a PV4D4 thin film, the increase in selectivity to 2-propanol vapors is observed even at relatively low operating temperatures, starting from >200 °C. The present study demonstrates possibilities for improving the properties of metal oxide gas sensors, which is very important in applications in fields such as medicine, security and food safety.

18.
Nanoscale Adv ; 5(4): 1115-1123, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36798508

RESUMO

A novel combined setup of a Haberland type gas aggregation source and a secondary radio frequency discharge is used to generate, confine, and coat nanoparticles over much longer time scales than traditional in-flight treatment. The process is precisely monitored using localized surface plasmon resonance and Fourier-transform infrared spectroscopy as in situ diagnostics. They indicate that both untreated and treated particles can be confined for extended time periods (at least one hour) with minimal losses. During the entire confinement time, the particle sizes do not show considerable alterations, enabling multiple well-defined modifications of the seed nanoparticles in this synthesis approach. The approach is demonstrated by generating Ag@SiO2 nanoparticles with a well-defined surface coating. The in situ diagnostics provide insights into the growth kinetics of the applied coating and are linked to the coating properties by using ex situ transmission electron microscopy and energy dispersive X-ray spectroscopy. Surface coating is shown to occur in two phases: first, singular seeds appear on the particle surface which then grow to cover the entire particle surface over 3 to 5 minutes. Afterwards, deposition occurs via surface growth which coincides with lower deposition rates. Our setup offers full control for various treatment options, which is demonstrated by coating the nanoparticles with a SiO2 layer followed by the etching of the part of the applied coating using hydrogen. Thus, complex multi-step nanofabrication, e.g., using different monomers, as well as very large coating thicknesses is possible.

19.
Biosensors (Basel) ; 13(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37232899

RESUMO

Certain molecules act as biomarkers in exhaled breath or outgassing vapors of biological systems. Specifically, ammonia (NH3) can serve as a tracer for food spoilage as well as a breath marker for several diseases. H2 gas in the exhaled breath can be associated with gastric disorders. This initiates an increasing demand for small and reliable devices with high sensitivity capable of detecting such molecules. Metal-oxide gas sensors present an excellent tradeoff, e.g., compared to expensive and large gas chromatographs for this purpose. However, selective identification of NH3 at the parts-per-million (ppm) level as well as detection of multiple gases in gas mixtures with one sensor remain a challenge. In this work, a new two-in-one sensor for NH3 and H2 detection is presented, which provides stable, precise, and very selective properties for the tracking of these vapors at low concentrations. The fabricated 15 nm TiO2 gas sensors, which were annealed at 610 °C, formed two crystal phases, namely anatase and rutile, and afterwards were covered with a thin 25 nm PV4D4 polymer nanolayer via initiated chemical vapor deposition (iCVD) and showed precise NH3 response at room temperature and exclusive H2 detection at elevated operating temperatures. This enables new possibilities in application fields such as biomedical diagnosis, biosensors, and the development of non-invasive technology.


Assuntos
Amônia , Gases , Gases/química , Titânio/química
20.
Nanoscale ; 15(38): 15768-15774, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37740389

RESUMO

Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA