Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Invest Radiol ; 59(7): 495-503, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117137

RESUMO

OBJECTIVES: Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS: Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd 3+ (12.5-100 µM) and GBCA (100-2000 µM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS: Gd 3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 µM Gd 3+ on days 4-6 of culture as compared with unexposed controls ( P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 µM on day 5 ( P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 µM on day 5 ( P < 0.001). In cultures of OPC, cell viability was not affected by Gd 3+ , whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 µM Gd 3+ on days 4-6 ( P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 µM on day 5 of culture ( P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA ( P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt ( P < 0.001). CONCLUSIONS: Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Meios de Contraste , Camundongos Endogâmicos C57BL , Osteoblastos , Osteoclastos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Gadolínio/farmacologia , Gadolínio DTPA/farmacologia , Linhagem da Célula , Imageamento por Ressonância Magnética/métodos , Proliferação de Células/efeitos dos fármacos , Compostos Organometálicos/farmacologia
2.
Bone Rep ; 20: 101739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304619

RESUMO

Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, ß-tri­calcium-phosphate (ßTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation. Female NMRI mice (11-12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and ßTCP-cylinders loaded with 0.25 µg or 2.5 µg BMP2, 2.5 µg L51P, and 0.25 µg BMP2/2.5 µg L51P, respectively, were inserted. Unloaded ßTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation. Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 µg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 µg L51P, 0.25 µg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 µg BMP2/2.5 µg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the ßTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptome signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 µg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model. The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.

3.
Acta Biomater ; 177: 148-156, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325708

RESUMO

Bone morphogenic protein 2 (BMP2) is known to induce osteogenesis and is applied clinically to enhance spinal fusion despite adverse effects. BMP2 needs to be used in high doses to be effective due to the presence of BMP2 inhibitors. L51P is a BMP2 analogue that acts by inhibition of BMP2 inhibitors. Here, we hypothesized that mixtures of BMP2 and L51P could achieve better spinal fusion outcomes regarding ossification. To test whether mixtures of both cytokines are sufficient to improve ossification, 45 elderly Wistar rats (of which 21 were males) were assigned to seven experimental groups, all which received spinal fusion surgery, including discectomy at the caudal 4-5 level using an external fixator and a porous ß-tricalcium phosphate (ßTCP) carrier. These ßTCP carriers were coated with varying concentrations of BMP2 and L51P. X-rays were taken immediately after surgery and again six and twelve weeks post-operatively. Histological sections and µCT were analyzed after twelve weeks. Spinal fusion was assessed using X-ray, µCT and histology according to the Bridwell scale by voxel-based quantification and a semi-quantitative histological score, respectively. The results were congruent across modalities and revealed high ossification for high-dose BMP2 (10 µg), while PBS induced no ossification. Low-dose BMP2 (1 µg) or 10 µg L51P alone did not induce relevant bone formation. However, all combinations of low-dose BMP2 with L51P (1 µg + 1/5/10 µg) were able to induce similar ossificationas high-dose BMP2. These results are of high clinical relevance, as they indicate L51P is sufficient to increase the efficacy of BMP2 and thus lower the required dose for spinal fusion. STATEMENT OF SIGNIFICANCE: Spinal fusion surgery is frequently applied to treat spinal pathologies. Bone Morphogenic Protein-2 (BMP2) has been approved by the U .S. Food and Drug Administration (FDA-) and by the "Conformité Européenne" (CE)-label. However, its application is expensive and high concentrations cause side-effects. This research targets the improvement of the efficacy of BMP2 in spinal fusion surgery.


Assuntos
Proteína Morfogenética Óssea 2 , Fusão Vertebral , Humanos , Masculino , Ratos , Animais , Idoso , Feminino , Proteína Morfogenética Óssea 2/farmacologia , Ratos Wistar , Fusão Vertebral/métodos , Cauda , Osteogênese , Fator de Crescimento Transformador beta/farmacologia
4.
Biomaterials ; 236: 119802, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014804

RESUMO

The poor healing capacity of tendons is known to worsen in the elderly. During tendon aging and degeneration, endogenous human tendon stem/progenitor cells (hTSPCs) experience profound pathological changes. Here, we explored a rejuvenation strategy for hTSPCs derived from aged/degenerated Achilles tendons (A-TSPCs) by providing three-dimensional (3D) nanofiber hydrogels and comparing them to young/healthy TSPCs (Y-TSPCs). RADA peptide hydrogel has a self-assembling ability, forms a nanofibrous 3D niche and can be further functionalized by adding RGD motifs. Cell survival, apoptosis, and proliferation assays demonstrated that RADA and RADA/RGD hydrogels support A-TSPCs in a comparable manner to Y-TSPCs. Moreover, they rejuvenated A-TSPCs to a phenotype similar to that of Y-TSPCs, as evidenced by restored cell morphology and cytoskeletal architecture. Transmission electron, confocal laser scanning and atomic force microscopies demonstrated comparable ultrastructure, surface roughness and elastic modulus of A- and Y-TSPC-loaded hydrogels. Lastly, quantitative PCR revealed similar expression profiles, as well a significant upregulation of genes related to tenogenesis and multipotency. Taken together, the RADA-based hydrogels exert a rejuvenating effect by recapitulating in vitro specific features of the natural microenvironment of human TSPCs, which strongly indicates their potential to direct cell behaviour and overcome the challenge of cell aging and degeneration in tendon repair.


Assuntos
Nanofibras , Idoso , Diferenciação Celular , Sobrevivência Celular , Senescência Celular , Humanos , Células-Tronco
5.
PLoS One ; 14(5): e0216320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048931

RESUMO

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy, caused by mutations in the RS1 gene which encodes the secreted protein retinoschisin. In recent years, several molecules have been proposed to interact with retinoschisin, including the retinal Na/K-ATPase, L-voltage gated Ca2+ channels, and specific sugars. We recently showed that the retinal Na/K-ATPase consisting of subunits ATP1A3 and ATP1B2 is essential for anchoring retinoschisin to plasma membranes and identified the glycosylated ATP1B2 subunit as the direct interaction partner for retinoschisin. We now aimed to precisely map the retinoschisin binding domain(s) in ATP1B2. In general, retinoschisin binding was not affected after selective elimination of individual glycosylation sites via site-directed mutagenesis as well as after full enzymatic deglycosylation of ATP1B2. Applying the interface prediction tool PresCont, two putative protein-protein interaction patches ("patch I" and "patch II") consisting each of four hydrophobic amino acid stretches on the ATP1B2 surface were identified. These were consecutively altered by site-directed mutagenesis. Functional assays with the ATP1B2 patch mutants identified patch II and, specifically, the associated amino acid at position 240 (harboring a threonine in ATP1B2) as crucial for retinoschisin binding to ATP1B2. These and previous results led us to suggest an induced-fit binding mechanism for the interaction between retinoschisin and the Na/K-ATPase, which is dependent on threonine 240 in ATP1B2 allowing the accommodation of hyperflexible retinoschisin spikes by the associated protein-protein interaction patch on ATP1B2.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas do Olho/metabolismo , Retina/metabolismo , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Olho/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA