Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37093996

RESUMO

Poly(vinyl alcohol) (PVA) has ice binding and ice nucleating properties. Here, we explore the dependence of the molecular size of PVA on its ice nucleation activity. For this purpose, we studied ice nucleation in aqueous solutions of PVA samples with molar masses ranging from 370 to 145 000 g mol-1, with a particular focus on oligomer samples with low molar mass. The experiments employed a novel microfluidic setup that is a follow-up on the previous WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) design by Reicher et al. The modified setup introduced and characterized here, termed nanoliter Bielefeld Ice Nucleation ARraY (nanoBINARY), uses droplet microfluidics with droplets (96 ± 4) µm in diameter and a fluorinated continuous oil phase and surfactant. A comparison of homogeneous and heterogeneous ice nucleation data obtained with nanoBINARY to those obtained with WISDOM shows very good agreement, underpinning its ability to study low-temperature ice nucleators as well as homogeneous ice nucleation due to the low background of impurities. The experiments on aqueous PVA solutions revealed that the ice nucleation activity of shorter PVA chains strongly decreases with a decrease in molar mass. While the cumulative number of ice nucleating sites per mass nm of polymers with different molar masses is the same, it becomes smaller for oligomers and completely vanishes for dimer and monomer representatives such as 1,3-butanediol, propan-2-ol, and ethanol, most likely because these molecules become too small to effectively stabilize the critical ice embryo. Overall, our results are consistent with PVA polymers and oligomers acting as heterogeneous ice nucleators.

2.
Bioorg Med Chem Lett ; 75: 128948, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987508

RESUMO

The c-MET receptor tyrosine kinase has received considerable attention as a cancer drug target yet there remains a need for inhibitors which are selective for c-MET and able to target emerging drug-resistant mutants. We report here the discovery, by screening a DNA-encoded chemical library, of a highly selective c-MET inhibitor which was shown by X-ray crystallography to bind to the kinase in an unprecedented manner. These results represent a novel mode of inhibiting c-MET with a small molecule and may provide a route to targeting drug-resistant forms of the kinase whilst avoiding potential toxicity issues associated with broad kinome inhibition.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-met , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química
3.
Biochemistry ; 59(50): 4775-4786, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33274632

RESUMO

Protein arginine methyltransferases (PRMTs) are of great interest for the development of therapeutics due to their involvement in a number of malignancies, such as lung and colon cancer. PRMT5 catalyzes the formation of symmetrical dimethylarginine of a wide variety of substrates and is responsible for the majority of this mark within cells. To gain insight into the mechanism of PRMT5 inhibition, we co-expressed the human PRMT5:MEP50 complex (hPRMT5:MEP50) in insect cells for a detailed mechanistic study. In this report, we carry out steady state, product, and dead-end inhibitor studies that show hPRMT5:MEP50 uses a rapid equilibrium random order mechanism with EAP and EBQ dead-end complexes. We also provide evidence of ternary complex formation in solution using hydrogen/deuterium exchange mass spectrometry. Isotope exchange and intact protein mass spectrometry further rule out ping-pong as a potential enzyme mechanism, and finally, we show that PRMT5 exhibits a pre-steady state burst that corresponds to an initial slow turnover with all four active sites of the hetero-octamer being catalytically active.


Assuntos
Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Medição da Troca de Deutério , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Cinética , Espectrometria de Massas , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteína-Arginina N-Metiltransferases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Mod Pathol ; 33(4): 518-530, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31558782

RESUMO

Programmed cell death ligand-1 (PD-L1) expression levels in patient tumor samples have proven clinical utility across various cancer types. Several independently developed PD-L1 immunohistochemical (IHC) predictive assays are commercially available. Published studies using the VENTANA PD-L1 (SP263) Assay, VENTANA PD-L1 (SP142) Assay, Dako PD-L1 IHC 22C3 pharmDx assay, Dako PD-L1 IHC 28-8 pharmDx assay, and laboratory-developed tests utilizing the E1L3N antibody (Cell Signaling Technology), have demonstrated differing levels of PD-L1 staining between assays, resulting in conjecture as to whether antibody-binding epitopes could be responsible for discordance between assays. Therefore, to understand the performance of different PD-L1 predictive immunohistochemistry assays, we aimed to distinguish the epitopes within the PD-L1 protein responsible for antibody binding. The sites at which antibody clones SP263, SP142, 22C3, 28-8, and E1L3N bind to recombinant PD-L1 were assessed using several methods, including conformational peptide array, surface plasmon resonance, and/or hydrogen/deuterium exchange mass spectrometry. Putative binding sites were confirmed by site-directed mutagenesis of PD-L1, followed by western blotting and immunohistochemical analysis of cell lines expressing mutant constructs. Our results demonstrate that clones SP263 and SP142 bind to an identical epitope in the cytoplasmic domain at the extreme C-terminus of PD-L1, distinct from 22C3 and 28-8. Using mutated PD-L1 constructs, an additional clone, E1L3N, was also found to bind to the cytoplasmic domain of PD-L1. The E1L3N binding epitope overlaps considerably with the SP263/SP142 binding site but is not identical. Clones 22C3 and 28-8 have binding profiles in the extracellular domain of PD-L1, which differ from one another. Despite identifying epitope binding variance among antibodies, evidence indicates that only the SP142 assay generates significantly discordant immunohistochemical staining, which can be resolved by altering the assay protocol. Therefore, inter-assay discordances are more likely attributable to tumor heterogeneity, assay, or platform variables rather than antibody epitope.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Antígeno B7-H1/imunologia , Sítios de Ligação de Anticorpos , Mapeamento de Epitopos , Imuno-Histoquímica , Neoplasias/imunologia , Anticorpos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Glicosilação , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Valor Preditivo dos Testes , Ligação Proteica , Reprodutibilidade dos Testes
6.
Biomacromolecules ; 21(1): 7-17, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31418266

RESUMO

Cellular cryopreservation is a platform technology which underpins cell biology, biochemistry, biomaterials, diagnostics, and the cold chain for emerging cell-based therapies. This technique relies on effective methods for banking and shipping to avoid the need for continuous cell culture. The most common method to achieve cryopreservation is to use large volumes of organic solvent cryoprotective agents which can promote either a vitreous (ice free) phase or dehydrate and protect the cells. These methods are very successful but are not perfect: not all cell types can be cryopreserved and recovered, and the cells do not always retain their phenotype and function post-thaw. This Perspective will introduce polyampholytes as emerging macromolecular cryoprotective agents and demonstrate they have the potential to impact a range of fields from cell-based therapies to basic cell biology and may be able to improve, or replace, current solvent-based cryoprotective agents. Polyampholytes have been shown to be remarkable (mammalian cell) cryopreservation enhancers, but their mechanism of action is unclear, which may include membrane protection, solvent replacement, or a yet unknown protective mechanism, but it seems the modulation of ice growth (recrystallization) may only play a minor role in their function, unlike other macromolecular cryoprotectants. This Perspective will discuss their synthesis and summarize the state-of-the-art, including hypotheses of how they function, to introduce this exciting area of biomacromolecular science.


Assuntos
Criopreservação/métodos , Crioprotetores , Animais , Linhagem Celular , Humanos , Substâncias Macromoleculares
7.
J Exp Bot ; 70(14): 3649-3658, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301144

RESUMO

All scientific measurements are affected to some degree by both systematic and random errors. The quantification of these errors supports correct interpretation of data, thus supporting scientific progress. Absence of information regarding reliability and accuracy can slow scientific progress, and can lead to a reproducibility crisis. Here we consider both measurement theory and plant biomechanics literature. Drawing from measurement theory literature, we review techniques for assessing both the accuracy and uncertainty of a measurement process. In our survey of plant biomechanics literature, we found that direct assessment of measurement accuracy and uncertainty is not yet common. The advantages and disadvantages of efforts to quantify measurement accuracy and uncertainty are discussed. We conclude with recommended best practices for improving the scientific rigor in plant biomechanics through attention to the issues of measurement accuracy and uncertainty.


Assuntos
Biofísica/normas , Plantas/química , Fenômenos Biomecânicos , Biofísica/métodos , Incerteza
8.
J Exp Bot ; 70(14): 3439-3451, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698795

RESUMO

With few exceptions, terrestrial plants are anchored to substrates by roots that experience bending and twisting forces resulting from gravity- and wind-induced forces. Mechanical failure occurs when these forces exceed the flexural or torsional tolerance limits of stems or roots, or when roots are dislodged from their substrate. The emphasis of this review is on the general principles of anchorage, how the mechanical failure of root anchorage can be averted, and recommendations for future research.


Assuntos
Raízes de Plantas/química , Fenômenos Biomecânicos , Biofísica , Gravitação , Raízes de Plantas/crescimento & desenvolvimento , Vento
9.
Langmuir ; 35(23): 7347-7353, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095267

RESUMO

Poly(vinyl alcohol) (PVA) has emerged as the most potent mimic of antifreeze (glyco)proteins ice recrystallization inhibition (IRI) activity, despite its lack of structural similarities and flexible, rather than rigid, backbone. The precise spacing of hydroxyl groups is hypothesized to enable PVA to recognize the prism planes of ice but not the basal plane, due to hydroxyl pattern matching of the ice surface giving rise to the macroscopic activity. Here, well-defined PVA derived from reversible addition-fragmentation chain-transfer (RAFT) polymerization is immobilized onto gold nanoparticles to enable the impact of nanoscale assembly and confinement on the observed IRI activity. Unlike previous reports using star-branched or bottle-brush PVAs, the nanoparticle-PVA retains all IRI activity compared to polymers in solution. Evidence is presented to show that this is due to the low grafting densities on the particle surface meaning the chains are free to explore the ice faces, rather than being constrained as in star-branched polymers. These results demonstrate a route to develop more functional IRI's and inclusion of metallic particle cores for imaging and associated applications in cryobiology.

10.
Biomacromolecules ; 20(8): 3104-3114, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31268698

RESUMO

The storage and transport of frozen cells underpin the emerging/existing cell-based therapies and are used in every biomedical research lab globally. The current gold-standard cryoprotectant dimethyl sulfoxide (DMSO) does not give quantitative cell recovery in suspension or in two-dimensional (2D) or three-dimensional (3D) cell models, and the solvent and cell debris must be removed prior to application/transfusion. There is a real need to improve this 50-year-old method to underpin emerging regenerative and cell-based therapies. Here, we introduce a potent and synthetically scalable polymeric cryopreservation enhancer which is easily obtained in a single step from a low cost and biocompatible precursor, poly(methyl vinyl ether-alt-maleic anhydride). This poly(ampholyte) enables post-thaw recoveries of up to 88% for a 2D cell monolayer model compared to just 24% using conventional DMSO cryopreservation. The poly(ampholyte) also enables reduction of [DMSO] from 10 wt % to just 2.5 wt % in suspension cryopreservation, which can reduce the negative side effects and speed up post-thaw processing. After thawing, the cells have reduced membrane damage and faster growth rates compared to those without the polymer. The polymer appears to function by a unique extracellular mechanism by stabilization of the cell membrane, rather than by modulation of ice formation and growth. This new macromolecular cryoprotectant will find applications across basic and translational biomedical science and may improve the cold chain for cell-based therapies.


Assuntos
Sobrevivência Celular , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Neoplasias Pulmonares/patologia , Maleatos/química , Polietilenos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Crioprotetores/química , Dimetil Sulfóxido/química , Humanos , Células Tumorais Cultivadas
11.
Proc Natl Acad Sci U S A ; 113(29): 8206-11, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382180

RESUMO

We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide "color-blind" animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.


Assuntos
Cefalópodes/anatomia & histologia , Cefalópodes/fisiologia , Defeitos da Visão Cromática/fisiopatologia , Pupila/fisiologia , Animais , Comportamento Animal , Mimetismo Biológico , Cor , Opsinas/fisiologia , Pigmentação
12.
Biomacromolecules ; 18(1): 295-302, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27936601

RESUMO

Antifreeze proteins from polar fish species are potent ice recrystallization inhibitors (IRIs) effectively stopping all ice growth. Additives that have IRI activity have been shown to enhance cellular cryopreservation with potential to improve the distribution of donor cells and tissue. Polyampholytes, polymers with both anionic and cationic side chains, are a rapidly emerging class of polymer cryoprotectants, but their mode of action and the structural features essential for activity are not clear. Here regioregular polyampholytes are synthesized from maleic anhydride copolymers to enable stoichiometric installation of the charged groups, ensuring regioregularity, which is not possible using conventional random copolymerization. A modular synthetic strategy is employed to enable the backbone and side chain hydrophobicity to be varied, with side chain hydrophobicity found to have a profound effect on the IRI activity. The activity of the regioregular polymers was found to be superior to those derived from a standard random copolymerization with statistical incorporation of monomers, demonstrating that sequence composition is crucial to the activity of IRI active polyampholytes.


Assuntos
Proteínas Anticongelantes/química , Crioprotetores/química , Gelo , Anidridos Maleicos/química , Polímeros/química , Biomimética , Cristalização
13.
J Microsc ; 258(1): 68-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25664385

RESUMO

Multiphoton microscopy is widely employed in the life sciences using extrinsic fluorescence of low- and high-molecular weight labels with excitation and emission spectra in the visible and near infrared regions. For imaging of intrinsic and extrinsic fluorophores with excitation spectra in the ultraviolet region, multiphoton excitation with one- or two-colour lasers avoids the need for ultraviolet-transmitting excitation optics and has advantages in terms of optical penetration in the sample and reduced phototoxicity. Excitation and detection of ultraviolet emission around 300 nm and below in a typical inverted confocal microscope is more difficult and requires the use of expensive quartz optics including the objective. In this technical note we describe the adaptation of a commercial confocal microscope (Nikon, Japan E-C1 or E-C2) for versatile use with Ti-sapphire and OPO laser sources and the addition of a second detection channel that enables detection of ultraviolet fluorescence and increases detection sensitivity in a typical fluorescence lifetime imaging microscopy experiment. Results from some experiments with this setup illustrate the resulting capabilities.


Assuntos
Microscopia Confocal/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Apoptose , Desenho de Equipamento , Corantes Fluorescentes , Células Tumorais Cultivadas
15.
MethodsX ; 12: 102562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38292308

RESUMO

Stalk lodging (structural failure crops prior to harvest) significantly reduces annual yields of vital grain crops. The lack of standardized, high throughput phenotyping methods capable of quantifying biomechanical plant traits prevents comprehensive understanding of the genetic architecture of stalk lodging resistance. A phenotyping pipeline developed to enable higher throughput biomechanical measurements of plant traits related to stalk lodging is presented. The methods were developed using principles from the fields of engineering mechanics and metrology and they enable retention of plant-specific data instead of averaging data across plots as is typical in most phenotyping studies. This pipeline was specifically designed to be implemented in large experimental studies and has been used to phenotype over 40,000 maize stalks. The pipeline includes both lab- and field-based phenotyping methodologies and enables the collection of metadata. Best practices learned by implementing this pipeline over the past three years are presented. The specific instruments (including model numbers and manufacturers) that work well for these methods are presented, however comparable instruments may be used in conjunction with these methods as seen fit.•Efficient methods to measure biomechanical traits and record metadata related to stalk lodging.•Can be used in studies with large sample sizes (i.e., > 1,000).

16.
ACS Med Chem Lett ; 15(6): 791-797, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894895

RESUMO

Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.

17.
BMC Cell Biol ; 14: 3, 2013 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-23311891

RESUMO

BACKGROUND: The mammalian target of rapamycin (mTOR) signalling pathway has a key role in cellular regulation and several diseases. While it is thought that Rheb GTPase regulates mTOR, acting immediately upstream, while raptor is immediately downstream of mTOR, direct interactions have yet to be verified in living cells, furthermore the localisation of Rheb has been reported to have only a cytoplasmic cellular localization. RESULTS: In this study a cytoplasmic as well as a significant sub-cellular nuclear mTOR localization was shown , utilizing green and red fluorescent protein (GFP and DsRed) fusion and highly sensitive single photon counting fluorescence lifetime imaging microscopy (FLIM) of live cells. The interaction of the mTORC1 components Rheb, mTOR and raptor, tagged with EGFP/DsRed was determined using fluorescence energy transfer-FLIM. The excited-state lifetime of EGFP-mTOR of ~2400 ps was reduced by energy transfer to ~2200 ps in the cytoplasm and to 2000 ps in the nucleus when co-expressed with DsRed-Rheb, similar results being obtained for co-expressed EGFP-mTOR and DsRed-raptor. The localization and distribution of mTOR was modified by amino acid withdrawal and re-addition but not by rapamycin. CONCLUSIONS: The results illustrate the power of GFP-technology combined with FRET-FLIM imaging in the study of the interaction of signalling components in living cells, here providing evidence for a direct physical interaction between mTOR and Rheb and between mTOR and raptor in living cells for the first time.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CHO , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Monoméricas de Ligação ao GTP/análise , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/análise , Neuropeptídeos/genética , Ligação Proteica/efeitos dos fármacos , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteína Regulatória Associada a mTOR , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/análise , Serina-Treonina Quinases TOR/genética , Imagem com Lapso de Tempo , Proteína Vermelha Fluorescente
18.
Plant Methods ; 19(1): 3, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624506

RESUMO

This study presents a methodology for a high-throughput digitization and quantification process of plant cell walls characterization, including the automated development of two-dimensional finite element models. Custom algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound microscope images of both herbaceous and woody representatives were observed and processed. In addition, parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus.

19.
Chem Sci ; 14(25): 7057-7067, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389247

RESUMO

Understanding allosteric regulation in biomolecules is of great interest to pharmaceutical research and computational methods emerged during the last decades to characterize allosteric coupling. However, the prediction of allosteric sites in a protein structure remains a challenging task. Here, we integrate local binding site information, coevolutionary information, and information on dynamic allostery into a structure-based three-parameter model to identify potentially hidden allosteric sites in ensembles of protein structures with orthosteric ligands. When tested on five allosteric proteins (LFA-1, p38-α, GR, MAT2A, and BCKDK), the model successfully ranked all known allosteric pockets in the top three positions. Finally, we identified a novel druggable site in MAT2A confirmed by X-ray crystallography and SPR and a hitherto unknown druggable allosteric site in BCKDK validated by biochemical and X-ray crystallography analyses. Our model can be applied in drug discovery to identify allosteric pockets.

20.
Chem Sci ; 14(26): 7136-7146, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416723

RESUMO

Plant homeodomain fingers (PHD-fingers) are a family of reader domains that can recruit epigenetic proteins to specific histone modification sites. Many PHD-fingers recognise methylated lysines on histone tails and play crucial roles in transcriptional regulation, with their dysregulation linked to various human diseases. Despite their biological importance, chemical inhibitors for targeting PHD-fingers are very limited. Here we report a potent and selective de novo cyclic peptide inhibitor (OC9) targeting the Nε-trimethyllysine-binding PHD-fingers of the KDM7 histone demethylases, developed using mRNA display. OC9 disrupts PHD-finger interaction with histone H3K4me3 by engaging the Nε-methyllysine-binding aromatic cage through a valine, revealing a new non-lysine recognition motif for the PHD-fingers that does not require cation-π interaction. PHD-finger inhibition by OC9 impacted JmjC-domain mediated demethylase activity at H3K9me2, leading to inhibition of KDM7B (PHF8) but stimulation of KDM7A (KIAA1718), representing a new approach for selective allosteric modulation of demethylase activity. Chemoproteomic analysis showed selective engagement of OC9 with KDM7s in T cell lymphoblastic lymphoma SUP T1 cells. Our results highlight the utility of mRNA-display derived cyclic peptides for targeting challenging epigenetic reader proteins to probe their biology, and the broader potential of this approach for targeting protein-protein interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA