Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852175

RESUMO

PURPOSE: Wideband phase-sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) enables myocardial scar imaging in implantable cardioverter defibrillators (ICD) patients, mitigating hyperintensity artifacts. To address subendocardial scar visibility challenges, a 2D breath-hold single-shot electrocardiography-triggered black-blood (BB) LGE sequence was integrated with wideband imaging, enhancing scar-blood contrast. METHODS: Wideband BB, with increased bandwidth in the inversion pulse (0.8-3.8 kHz) and T2 preparation refocusing pulses (1.6-5.0 kHz), was compared with conventional and wideband PSIR, and conventional BB, in a phantom and sheep with and without ICD, and in six patients with cardiac devices and known myocardial injury. ICD artifact extent was quantified in the phantom and specific absorption rate (SAR) was reported for each sequence. Image contrast ratios were analyzed in both phantom and animal experiments. Expert radiologists assessed image quality, artifact severity, and scar segments in patients and sheep. Additionally, histology was performed on the sheep's heart. RESULTS: In the phantom, wideband BB reduced ICD artifacts by 62% compared to conventional BB while substantially improving scar-blood contrast, but with a SAR more than 24 times that of wideband PSIR. Similarly, the animal study demonstrated a considerable increase in scar-blood contrast with wideband BB, with superior scar detection compared with wideband PSIR, the latter confirmed by histology. In alignment with the animal study, wideband BB successfully eliminated severe ICD hyperintensity artifacts in all patients, surpassing wideband PSIR in image quality and scar detection. CONCLUSION: Wideband BB may play a crucial role in imaging ICD patients, offering images with reduced ICD artifacts and enhanced scar detection.

2.
J Magn Reson Imaging ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949101

RESUMO

BACKGROUND: Myocardial T1-rho (T1ρ) mapping is a promising method for identifying and quantifying myocardial injuries without contrast agents, but its clinical use is hindered by the lack of dedicated analysis tools. PURPOSE: To explore the feasibility of clinically integrated artificial intelligence-driven analysis for efficient and automated myocardial T1ρ mapping. STUDY TYPE: Retrospective. POPULATION: Five hundred seventy-three patients divided into a training (N = 500) and a test set (N = 73) including ischemic and nonischemic cases. FIELD STRENGTH/SEQUENCE: Single-shot bSSFP T1ρ mapping sequence at 1.5 T. ASSESSMENT: The automated process included: left ventricular (LV) wall segmentation, right ventricular insertion point detection and creation of a 16-segment model for segmental T1ρ value analysis. Two radiologists (20 and 7 years of MRI experience) provided ground truth annotations. Interobserver variability and segmentation quality were assessed using the Dice coefficient with manual segmentation as reference standard. Global and segmental T1ρ values were compared. Processing times were measured. STATISTICAL TESTS: Intraclass correlation coefficients (ICCs) and Bland-Altman analysis (bias ±2SD); Paired Student's t-tests and one-way ANOVA. A P value <0.05 was considered significant. RESULTS: The automated approach significantly reduced processing time (3 seconds vs. 1 minute 51 seconds ± 22 seconds). In the test set, automated LV wall segmentation closely matched manual results (Dice 81.9% ± 9.0) and closely aligned with interobserver segmentation (Dice 82.2% ± 6.5). Excellent ICCs were achieved on a patient basis (0.94 [95% CI: 0.91 to 0.96]) with bias of -0.93 cm2 ± 6.60. There was no significant difference in global T1ρ values between manual (54.9 msec ± 4.6; 95% CI: 53.8 to 56.0 msec, range: 46.6-70.9 msec) and automated processing (55.4 msec ± 5.1; 95% CI: 54.2 to 56.6 msec; range: 46.4-75.1 msec; P = 0.099). The pipeline demonstrated a high level of agreement with manual-derived T1ρ values at the patient level (ICC = 0.85; bias +0.52 msec ± 5.18). No significant differences in myocardial T1ρ values were found between methods across the 16 segments (P = 0.75). DATA CONCLUSION: Automated myocardial T1ρ mapping shows promise for the rapid and noninvasive assessment of heart disease. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

3.
J Cardiovasc Magn Reson ; 26(1): 101037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499269

RESUMO

BACKGROUND: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR. METHODS: Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers. RESULTS: Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52). CONCLUSION: The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.


Assuntos
Artefatos , Cardiopatias Congênitas , Interpretação de Imagem Assistida por Computador , Valor Preditivo dos Testes , Humanos , Reprodutibilidade dos Testes , Feminino , Masculino , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Adulto , Adulto Jovem , Imageamento por Ressonância Magnética , Adolescente , Mecânica Respiratória , Técnicas de Imagem de Sincronização Respiratória , Criança , Pessoa de Meia-Idade , Respiração , Imagem Cinética por Ressonância Magnética
4.
J Cardiovasc Magn Reson ; 26(2): 101048, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878970

RESUMO

BACKGROUND: Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification. METHODS: Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients. RESULTS: In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001). CONCLUSIONS: Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.

5.
J Cardiovasc Magn Reson ; 26(1): 101006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309581

RESUMO

BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS: Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS: Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION: The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.


Assuntos
Interpretação de Imagem Assistida por Computador , Síndrome de Marfan , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Humanos , Velocidade do Fluxo Sanguíneo , Adulto , Masculino , Síndrome de Marfan/fisiopatologia , Feminino , Adulto Jovem , Estudos de Casos e Controles , Angiografia por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos de Viabilidade , Hemodinâmica , Imagem de Perfusão/métodos , Meios de Contraste/administração & dosagem , Fatores de Tempo , Pessoa de Meia-Idade
6.
MAGMA ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743377

RESUMO

OBJECT: To enable high-quality physics-guided deep learning (PG-DL) reconstruction of large-scale 3D non-Cartesian coronary MRI by overcoming challenges of hardware limitations and limited training data availability. MATERIALS AND METHODS: While PG-DL has emerged as a powerful image reconstruction method, its application to large-scale 3D non-Cartesian MRI is hindered by hardware limitations and limited availability of training data. We combine several recent advances in deep learning and MRI reconstruction to tackle the former challenge, and we further propose a 2.5D reconstruction using 2D convolutional neural networks, which treat 3D volumes as batches of 2D images to train the network with a limited amount of training data. Both 3D and 2.5D variants of the PG-DL networks were compared to conventional methods for high-resolution 3D kooshball coronary MRI. RESULTS: Proposed PG-DL reconstructions of 3D non-Cartesian coronary MRI with 3D and 2.5D processing outperformed all conventional methods both quantitatively and qualitatively in terms of image assessment by an experienced cardiologist. The 2.5D variant further improved vessel sharpness compared to 3D processing, and scored higher in terms of qualitative image quality. DISCUSSION: PG-DL reconstruction of large-scale 3D non-Cartesian MRI without compromising image size or network complexity is achieved, and the proposed 2.5D processing enables high-quality reconstruction with limited training data.

7.
Magn Reson Med ; 90(1): 117-132, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36877140

RESUMO

PURPOSE: To validate a respiratory motion correction method called focused navigation (fNAV) for free-running radial whole-heart 4D flow MRI. METHODS: Using fNAV, respiratory signals derived from radial readouts are converted into three orthogonal displacements, which are then used to correct respiratory motion in 4D flow datasets. Hundred 4D flow acquisitions were simulated with non-rigid respiratory motion and used for validation. The difference between generated and fNAV displacement coefficients was calculated. Vessel area and flow measurements from 4D flow reconstructions with (fNAV) and without (uncorrected) motion correction were compared to the motion-free ground-truth. In 25 patients, the same measurements were compared between fNAV 4D flow, 2D flow, navigator-gated Cartesian 4D flow, and uncorrected 4D flow datasets. RESULTS: For simulated data, the average difference between generated and fNAV displacement coefficients was 0.04 ± $$ \pm $$ 0.32 mm and 0.31 ± $$ \pm $$ 0.35 mm in the x and y directions, respectively. In the z direction, this difference was region-dependent (0.02 ± $$ \pm $$ 0.51 mm up to 5.85 ± $$ \pm $$ 3.41 mm). For all measurements (vessel area, net volume, and peak flow), the average difference from ground truth was higher for uncorrected 4D flow datasets (0.32 ± $$ \pm $$ 0.11 cm2 , 11.1 ± $$ \pm $$ 3.5 mL, and 22.3 ± $$ \pm $$ 6.0 mL/s) than for fNAV 4D flow datasets (0.10 ± $$ \pm $$ 0.03 cm2 , 2.6 ± $$ \pm $$ 0.7 mL, and 5.1 ± 0 $$ \pm 0 $$ .9 mL/s, p < 0.05). In vivo, average vessel area measurements were 4.92 ± $$ \pm $$ 2.95 cm2 , 5.06 ± $$ \pm $$ 2.64 cm2 , 4.87 ± $$ \pm $$ 2.57 cm2 , 4.87 ± $$ \pm $$ 2.69 cm2 , for 2D flow and fNAV, navigator-gated and uncorrected 4D flow datasets, respectively. In the ascending aorta, all 4D flow datasets except for the fNAV reconstruction had significantly different vessel area measurements from 2D flow. Overall, 2D flow datasets demonstrated the strongest correlation to fNAV 4D flow for both net volume (r2  = 0.92) and peak flow (r2  = 0.94), followed by navigator-gated 4D flow (r2  = 0.83 and r2  = 0.86, respectively), and uncorrected 4D flow (r2  = 0.69 and r2  = 0.86, respectively). CONCLUSION: fNAV corrected respiratory motion in vitro and in vivo, resulting in fNAV 4D flow measurements that are comparable to those derived from 2D flow and navigator-gated Cartesian 4D flow datasets, with improvements over those from uncorrected 4D flow.


Assuntos
Imageamento por Ressonância Magnética , Taxa Respiratória , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Aorta , Imageamento Tridimensional/métodos
8.
Magn Reson Med ; 90(3): 922-938, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37103471

RESUMO

PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Eletrocardiografia , Processamento de Imagem Assistida por Computador/métodos , Respiração , Imageamento Tridimensional/métodos
9.
J Cardiovasc Magn Reson ; 25(1): 34, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37331930

RESUMO

The potential of cardiac magnetic resonance to improve cardiovascular care and patient management is considerable. Myocardial T1-rho (T1ρ) mapping, in particular, has emerged as a promising biomarker for quantifying myocardial injuries without exogenous contrast agents. Its potential as a contrast-agent-free ("needle-free") and cost-effective diagnostic marker promises high impact both in terms of clinical outcomes and patient comfort. However, myocardial T1ρ mapping is still at a nascent stage of development and the evidence supporting its diagnostic performance and clinical effectiveness is scant, though likely to change with technological improvements. The present review aims at providing a primer on the essentials of myocardial T1ρ mapping, and to describe the current range of clinical applications of the technique to detect and quantify myocardial injuries. We also delineate the important limitations and challenges for clinical deployment, including the urgent need for standardization, the evaluation of bias, and the critical importance of clinical testing. We conclude by outlining technical developments to be expected in the future. If needle-free myocardial T1ρ mapping is shown to improve patient diagnosis and prognosis, and can be effectively integrated in cardiovascular practice, it will fulfill its potential as an essential component of a cardiac magnetic resonance examination.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/patologia , Valor Preditivo dos Testes , Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Espectroscopia de Ressonância Magnética
10.
J Cardiovasc Magn Reson ; 25(1): 40, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474977

RESUMO

Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.


Assuntos
Sistema Cardiovascular , Humanos , Velocidade do Fluxo Sanguíneo , Valor Preditivo dos Testes , Coração , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
11.
MAGMA ; 36(6): 877-885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37294423

RESUMO

OBJECTIVE: To simplify black-blood late gadolinium enhancement (BL-LGE) cardiac imaging in clinical practice using an image-based algorithm for automated inversion time (TI) selection. MATERIALS AND METHODS: The algorithm selects from BL-LGE TI scout images, the TI corresponding to the image with the highest number of sub-threshold pixels within a region of interest (ROI) encompassing the blood-pool and myocardium. The threshold value corresponds to the most recurrent pixel intensity of all scout images within the ROI. ROI dimensions were optimized in 40 patients' scans. The algorithm was validated retrospectively (80 patients) versus two experts and tested prospectively (5 patients) on a 1.5 T clinical scanner. RESULTS: Automated TI selection took ~ 40 ms per dataset (manual: ~ 17 s). Fleiss' kappa coefficient for automated-manual, intra-observer and inter-observer agreements were [Formula: see text]= 0.73, [Formula: see text] = 0.70 and [Formula: see text] = 0.63, respectively. The agreement between the algorithm and any expert was better than the agreement between the two experts or between two selections of one expert. DISCUSSION: Thanks to its good performance and simplicity of implementation, the proposed algorithm is a good candidate for automated BL-LGE imaging in clinical practice.


Assuntos
Meios de Contraste , Gadolínio , Humanos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Miocárdio , Imageamento por Ressonância Magnética/métodos
12.
Magn Reson Med ; 87(2): 718-732, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34611923

RESUMO

PURPOSE: In this work, we integrated the pilot tone (PT) navigation system into a reconstruction framework for respiratory and cardiac motion-resolved 5D flow. We tested the hypotheses that PT would provide equivalent respiratory curves, cardiac triggers, and corresponding flow measurements to a previously established self-gating (SG) technique while being independent from changes to the acquisition parameters. METHODS: Fifteen volunteers and 9 patients were scanned with a free-running 5D flow sequence, with PT integrated. Respiratory curves and cardiac triggers from PT and SG were compared across all subjects. Flow measurements from 5D flow reconstructions using both PT and SG were compared to each other and to a reference electrocardiogram-gated and respiratory triggered 4D flow acquisition. Radial trajectories with variable readouts per interleave were also tested in 1 subject to compare cardiac trigger quality between PT and SG. RESULTS: The correlation between PT and SG respiratory curves were 0.95 ± 0.06 for volunteers and 0.95 ± 0.04 for patients. Heartbeat duration measurements in volunteers and patients showed a bias to electrocardiogram measurements of, respectively, 0.16 ± 64.94 ms and 0.01 ± 39.29 ms for PT versus electrocardiogram and of 0.24 ± 63.68 ms and 0.09 ± 32.79 ms for SG versus electrocardiogram. No significant differences were reported for the flow measurements between 5D flow PT and from 5D flow SG. A decrease in the cardiac triggering quality of SG was observed for increasing readouts per interleave, whereas PT quality remained constant. CONCLUSION: PT has been successfully integrated in 5D flow MRI and has shown equivalent results to the previously described 5D flow SG technique, while being completely acquisition-independent.


Assuntos
Coração , Imageamento por Ressonância Magnética , Eletrocardiografia , Coração/diagnóstico por imagem , Humanos , Movimento (Física) , Respiração , Taxa Respiratória
13.
J Cardiovasc Magn Reson ; 24(1): 39, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35754040

RESUMO

BACKGROUND: Coronary cardiovascular magnetic resonance angiography (CCMRA) of congenital heart disease (CHD) in pediatric patients requires accurate planning, adequate sequence parameter adjustments, lengthy scanning sessions, and significant involvement from highly trained personnel. Anesthesia and intubation are commonplace to minimize movements and control respiration in younger subjects. To address the above concerns and provide a single-click imaging solution, we applied our free-running framework for fully self-gated (SG) free-breathing 5D whole-heart CCMRA to CHD patients after ferumoxytol injection. We tested the hypothesis that spatial and motion resolution suffice to visualize coronary artery ostia in a cohort of CHD subjects, both for intubated and free-breathing acquisitions. METHODS: In 18 pediatric CHD patients, non-electrocardiogram (ECG) triggered 5D free-running gradient echo CCMRA with whole-heart 1 mm3 isotropic spatial resolution was performed in seven minutes on a 1.5T CMR scanner. Eleven patients were anesthetized and intubated, while seven were breathing freely without anesthesia. All patients were slowly injected with ferumoxytol (4 mg/kg) over 15 minutes. Cardiac and respiratory motion-resolved 5D images were reconstructed with a fully SG approach. To evaluate the performance of motion resolution, visibility of coronary artery origins was assessed. Intubated and free-breathing patient sub-groups were compared for image quality using coronary artery length and conspicuity as well as lung-liver interface sharpness. RESULTS: Data collection using the free-running framework was successful in all patients in less than 8 min; scan planning was very simple without the need for parameter adjustments, while no ECG lead placement and triggering was required. From the resulting SG 5D motion-resolved reconstructed images, coronary artery origins could be retrospectively extracted in 90% of the cases. These general findings applied to both intubated and free-breathing pediatric patients (no difference in terms of lung-liver interface sharpness), while image quality and coronary conspicuity between both cohorts was very similar. CONCLUSIONS: A simple-to-use push-button framework for 5D whole-heart CCMRA was successfully employed in pediatric CHD patients with ferumoxytol injection. This approach, working without any external gating and for a wide range of heart rates and body sizes provided excellent definition of cardiac anatomy for both intubated and free-breathing patients.


Assuntos
Cardiopatias Congênitas , Angiografia por Ressonância Magnética , Criança , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Óxido Ferroso-Férrico , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/patologia , Humanos , Imageamento Tridimensional/métodos , Pulmão , Angiografia por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Respiração , Estudos Retrospectivos
14.
Magn Reson Med ; 86(3): 1434-1444, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33759208

RESUMO

PURPOSE: Designing a new T2 -preparation (T2 -Prep) module to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat-suppression module for T2 -weighted imaging at 3T. METHODS: The tip-down radiofrequency (RF) pulse of an adiabatic T2 -Prep module was replaced by a custom-designed RF-excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (a phaser adiabatic T2 -Prep). Numerical simulations and in vitro and in vivo electrocardiogram (ECG)-triggered navigator-gated acquisitions of the human heart were performed. Blood, myocardium, and fat signal-to-noise ratios and right coronary artery vessel sharpness were compared against previously published adiabatic T2 -Prep approaches. RESULTS: Numerical simulations predicted an increased fat-suppression bandwidth and decreased sensitivity to transmit magnetic field inhomogeneities using the proposed approach while preserving the water T2 -Prep capabilities. This was confirmed by the tissue signals acquired in the phantom and the in vivo images, which show similar blood and myocardium signal-to-noise ratio, contrast-to-noise ratio, and significantly reduced fat signal-to-noise ratio compared with the other methods. As a result, the right coronary artery conspicuity was significantly increased. CONCLUSION: A novel fat-suppressing T2 -Prep method was developed and implemented that showed robust fat suppression and increased vessel sharpness compared with conventional techniques while preserving its T2 -Prep capabilities.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Vasos Coronários , Coração/diagnóstico por imagem , Humanos , Imagens de Fantasmas
15.
Magn Reson Med ; 85(6): 3125-3139, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400296

RESUMO

PURPOSE: This study used a 5D flow framework to explore the influence of arrhythmia on thrombogenic hemodynamic parameters in patients with atrial fibrillation (AF). METHODS: A fully self-gated, 3D radial, highly accelerated free-running 5D flow sequence with interleaved four-point velocity-encoding was acquired using an in vitro arrhythmic flow phantom and in 25 patients with a history of AF (68 ± 8 y, 6 female). Self-gating signals were used to calculate AF burden, bin data, and tag each k-space line with its RRLength . Data were binned as an RR-resolved dataset with four RR-interval bins (RR1-RR4, short-to-long) for compressed sensing reconstruction. AF burden was calculated as interquartile range of all intrascan RR-intervals divided by median RR-interval, and left atrial (LA) stasis as the percent of the cardiac cycle where the velocity was <0.1 m/s. RESULTS: In vitro results demonstrated successful recovery of RR-binned flow curves using RR-resolved 5D flow compared to a real-time PC reference standard. In vivo, 5D flow was acquired in 8:48 minutes. AF burden was significantly correlated with 5D flow-derived peak (PV) and mean (MV) velocity and stasis (|ρ| = 0.54-0.75, P < .001). Sensitivity analyses determined a threshold for low versus high AF burden at 9.7%. High burden patients had increased LA mean stasis (up to +42%, P < .01), and lower MV and PV (-30%, -40.6%, respectively, P < .01). RR4 deviated furthest from respiratory-resolved reconstruction (end-expiration) with increased mean stasis (7.6% ± 14.0%, P = .10) and decreased PV (-12.7 ± 14.2%, P = .09). CONCLUSIONS: RR-resolved 5D flow can capture temporal and RR-resolved 3D hemodynamics in <10 minutes and offers a novel approach to investigate arrhythmias.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Feminino , Átrios do Coração/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
16.
Magn Reson Med ; 86(1): 213-229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624348

RESUMO

PURPOSE: Whole-heart MRA techniques typically target predetermined motion states, address cardiac and respiratory dynamics independently, and require either complex planning or computationally demanding reconstructions. In contrast, we developed a fast data-driven reconstruction algorithm with minimal physiological assumptions and compatibility with ungated free-running sequences. THEORY AND METHODS: We propose a similarity-driven multi-dimensional binning algorithm (SIMBA) that clusters continuously acquired k-space data to find a motion-consistent subset for whole-heart MRA reconstruction. Free-running 3D radial data sets from 12 non-contrast-enhanced scans of healthy volunteers and six ferumoxytol-enhanced scans of pediatric cardiac patients were reconstructed with non-motion-suppressed regridding of all the acquired data ("All Data"), with SIMBA, and with a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium sharpness and contrast ratio, visibility of coronary artery ostia, and right coronary artery sharpness. RESULTS: Both the 20-second SIMBA reconstruction and FRF provided significantly higher blood-myocardium sharpness than All Data in both patients and volunteers (P < .05). The SIMBA reconstruction provided significantly sharper blood-myocardium interfaces than FRF in volunteers (P < .001) and higher blood-myocardium contrast ratio than All Data and FRF, both in volunteers and patients (P < .05). Significantly more ostia could be visualized with both SIMBA (31 of 36) and FRF (34 of 36) than with All Data (4 of 36) (P < .001). Inferior right coronary artery sharpness using SIMBA versus FRF was observed (volunteers: SIMBA 36.1 ± 8.1%, FRF 40.4 ± 8.9%; patients: SIMBA 35.9 ± 7.7%, FRF 40.3 ± 6.1%, P = not significant). CONCLUSION: The SIMBA technique enabled a fast, data-driven reconstruction of free-running whole-heart MRA with image quality superior to All Data and similar to the more time-consuming FRF reconstruction.


Assuntos
Imageamento Tridimensional , Angiografia por Ressonância Magnética , Algoritmos , Criança , Vasos Coronários/diagnóstico por imagem , Humanos , Movimento (Física)
17.
NMR Biomed ; 34(11): e4589, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34291517

RESUMO

Abnormal coronary endothelial function (CEF), manifesting as depressed vasoreactive responses to endothelial-specific stressors, occurs early in atherosclerosis, independently predicts cardiovascular events, and responds to cardioprotective interventions. CEF is spatially heterogeneous along a coronary artery in patients with atherosclerosis, and thus recently developed and tested non-invasive 2D MRI techniques to measure CEF may not capture the extent of changes in CEF in a given coronary artery. The purpose of this study was to develop and test the first volumetric coronary 3D MRI cine method for assessing CEF along the proximal and mid-coronary arteries with isotropic spatial resolution and in free-breathing. This approach, called 3D-Stars, combines a 6 min continuous, untriggered golden-angle stack-of-stars acquisition with a novel image-based respiratory self-gating method and cardiac and respiratory motion-resolved reconstruction. The proposed respiratory self-gating method agreed well with respiratory bellows and center-of-k-space methods. In healthy subjects, 3D-Stars vessel sharpness was non-significantly different from that by conventional 2D radial in proximal segments, albeit lower in mid-portions. Importantly, 3D-Stars detected normal vasodilatation of the right coronary artery in response to endothelial-dependent isometric handgrip stress in healthy subjects. Coronary artery cross-sectional areas measured using 3D-Stars were similar to those from 2D radial MRI when similar thresholding was used. In conclusion, 3D-Stars offers good image quality and shows feasibility for non-invasively studying vasoreactivity-related lumen area changes along the proximal coronary artery in 3D during free-breathing.


Assuntos
Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/fisiologia , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Respiração , Adulto , Diástole/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Masculino
18.
NMR Biomed ; 34(1): e4418, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002268

RESUMO

Fluorine-19 (19 F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypotheses that a 19 F MRI pulse sequence that combines a specific undersampling regime with signal averaging has both increased sensitivity and robustness against motion artifacts compared with a non-averaged fully sampled pulse sequence, when both datasets are reconstructed with compressed sensing. As a proof of principle, numerical simulations and phantom experiments were performed on selected variable ranges to characterize the point spread function of undersampling patterns, as well as the vulnerability to noise of undersampling and reconstruction parameters with paired numbers of x signal averages and acceleration factor x (NAx-AFx). The numerical simulations demonstrated that a probability density function that uses 25% of the samples to fully sample the k-space central area allowed for an optimal balance between limited blurring and artifact incoherence. At all investigated noise levels, the Dice similarity coefficient (DSC) strongly depended on the regularization parameters and acceleration factor. In phantoms, the motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motion patterns. Differences were assessed with the DSC, which was consistently higher for the NA8-AF8 compared with the NA1-AF1 strategy, for both simulated and real cyclic motion patterns (P < 0.001). Both strategies were validated in vivo in mice (n = 2) injected with perfluoropolyether. Here, the images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypotheses that in 19 F MRI the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts.


Assuntos
Artefatos , Compressão de Dados , Flúor/química , Imageamento por Ressonância Magnética , Movimento (Física) , Processamento de Sinais Assistido por Computador , Abdome/diagnóstico por imagem , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
19.
J Cardiovasc Magn Reson ; 23(1): 33, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33775246

RESUMO

BACKGROUND: Radial self-navigated (RSN) whole-heart coronary cardiovascular magnetic resonance angiography (CCMRA) is a free-breathing technique that estimates and corrects for respiratory motion. However, RSN has been limited to a 1D rigid correction which is often insufficient for patients with complex respiratory patterns. The goal of this work is therefore to improve the robustness and quality of 3D radial CCMRA by incorporating both 3D motion information and nonrigid intra-acquisition correction of the data into a framework called focused navigation (fNAV). METHODS: We applied fNAV to 500 data sets from a numerical simulation, 22 healthy subjects, and 549 cardiac patients. In each of these cohorts we compared fNAV to RSN and respiratory resolved extradimensional golden-angle radial sparse parallel (XD-GRASP) reconstructions of the same data. Reconstruction times for each method were recorded. Motion estimate accuracy was measured as the correlation between fNAV and ground truth for simulations, and fNAV and image registration for in vivo data. Percent vessel sharpness was measured in all simulated data sets and healthy subjects, and a subset of patients. Finally, subjective image quality analysis was performed by a blinded expert reviewer who chose the best image for each in vivo data set and scored on a Likert scale 0-4 in a subset of patients by two reviewers in consensus. RESULTS: The reconstruction time for fNAV images was significantly higher than RSN (6.1 ± 2.1 min vs 1.4 ± 0.3, min, p < 0.025) but significantly lower than XD-GRASP (25.6 ± 7.1, min, p < 0.025). Overall, there is high correlation between the fNAV and reference displacement estimates across all data sets (0.73 ± 0.29). For simulated data, healthy subjects, and patients, fNAV lead to significantly sharper coronary arteries than all other reconstruction methods (p < 0.01). Finally, in a blinded evaluation by an expert reviewer fNAV was chosen as the best image in 444 out of 571 data sets (78%; p < 0.001) and consensus grades of fNAV images (2.6 ± 0.6) were significantly higher (p < 0.05) than uncorrected (1.7 ± 0.7), RSN (1.9 ± 0.6), and XD-GRASP (1.8 ± 0.8). CONCLUSION: fNAV is a promising technique for improving the quality of RSN free-breathing 3D whole-heart CCMRA. This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well as XD-GRASP reconstructions. Further study of the diagnostic impact of this technique is therefore warranted to evaluate its full clinical utility.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Angiografia Coronária , Doença das Coronárias/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Adulto , Idoso , Estudos de Casos e Controles , Simulação por Computador , Doença das Coronárias/fisiopatologia , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Movimento , Análise Numérica Assistida por Computador , Valor Preditivo dos Testes , Respiração , Adulto Jovem
20.
J Cardiovasc Magn Reson ; 23(1): 65, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34039356

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) is considered the method of choice for evaluation of aortic root dilatation in congenital heart disease. Usually, a cross-sectional 2D cine stack is acquired perpendicular to the vessel's axis. However, this method requires a considerable patient collaboration and precise planning of image planes. The present study compares a recently introduced 3D self-navigated free-breathing high-resolution whole heart CMR sequence (3D self nav) allowing a multiplanar retrospective reconstruction of the aortic root as an alternative to the 2D cine technique for determination of aortic root diameters. METHODS: A total of 6 cusp-commissure (CuCo) and cusp-cusp (CuCu) enddiastolic diameters were measured by two observers on 2D cine and 3D self nav cross-sectional planes of the aortic root acquired on a 1.5 T CMR scanner. Asymmetry of the aortic root was evaluated by the ratio of the minimal to the maximum 3D self nav CuCu diameter. CuCu diameters were compared to standard transthoracic echocardiographic (TTE) aortic root diameters. RESULTS: Sixty-five exams in 58 patients (32 ± 15 years) were included. Typically, 2D cine and 3D self nav spatial resolution was 1.1-1.52 × 4.5-7 mm and 0.9-1.153 mm, respectively. 3D self nav yielded larger maximum diameters than 2D cine: CuCo 37.2 ± 6.4 vs. 36.2 ± 7.0 mm (p = 0.006), CuCu 39.7 ± 6.3 vs. 38.5 ± 6.5 mm (p < 0.001). CuCu diameters were significantly larger (2.3-3.9 mm, p < 0.001) than CuCo and TTE diameters on both 2D cine and 3D self nav. Intra- and interobserver variabilities were excellent for both techniques with bias of -0.5 to 1.0 mm. Intra-observer variability of the more experienced observer was better for 3D self nav (F-test p < 0.05). Aortic root asymmetry was more pronounced in patients with bicuspid aortic valve (BAV: 0.73 (interquartile (IQ) 0.69; 0.78) vs. 0.93 (IQ 0.9; 0.96), p < 0.001), which was associated to a larger difference of maximum CuCu to TTE diameters: 5.5 ± 3.3 vs. 3.3 ± 3.8 mm, p = 0.033. CONCLUSION: Both, the 3D self nav and 2D cine CMR techniques allow reliable determination of aortic root diameters. However, we propose to privilege the 3D self nav technique and measurement of CuCu diameters to avoid underestimation of the maximum diameter, particularly in patients with asymmetric aortic roots and/or BAV.


Assuntos
Doença da Válvula Aórtica Bicúspide , Imagem Cinética por Ressonância Magnética , Valva Aórtica/diagnóstico por imagem , Estudos Transversais , Humanos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA