Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 163(3): 746-58, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496612

RESUMO

A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino-acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity, while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity, while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code.


Assuntos
Lectinas de Plantas/química , Lectinas de Plantas/genética , Fármacos Anti-HIV/química , Sequência de Carboidratos , Engenharia Genética , Mitógenos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Musa/química
2.
Nat Chem Biol ; 19(6): 703-711, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732620

RESUMO

Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.


Assuntos
Neoplasias , Fator de Transcrição STAT5 , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/metabolismo
3.
Bioorg Med Chem ; 71: 116942, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930851

RESUMO

An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (∼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Linfócitos T CD8-Positivos/metabolismo , Furanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacologia , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 116(48): 24303-24309, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31719195

RESUMO

Infection of animal cells by numerous viruses is detected and countered by a variety of means, including recognition of nonself nucleic acids. The zinc finger antiviral protein (ZAP) depletes cytoplasmic RNA that is recognized as foreign in mammalian cells by virtue of its elevated CG dinucleotide content compared with endogenous mRNAs. Here, we determined a crystal structure of a protein-RNA complex containing the N-terminal, 4-zinc finger human (h) ZAP RNA-binding domain (RBD) and a CG dinucleotide-containing RNA target. The structure reveals in molecular detail how hZAP is able to bind selectively to CG-rich RNA. Specifically, the 4 zinc fingers create a basic patch on the hZAP RBD surface. The highly basic second zinc finger contains a pocket that selectively accommodates CG dinucleotide bases. Structure guided mutagenesis, cross-linking immunoprecipitation sequencing assays, and RNA affinity assays show that the structurally defined CG-binding pocket is not required for RNA binding per se in human cells. However, the pocket is a crucial determinant of high-affinity, specific binding to CG dinucleotide-containing RNA. Moreover, variations in RNA-binding specificity among a panel of CG-binding pocket mutants quantitatively predict their selective antiviral activity against a CG-enriched HIV-1 strain. Overall, the hZAP RBD RNA structure provides an atomic-level explanation for how ZAP selectively targets foreign, CG-rich RNA.


Assuntos
Sequência Rica em GC , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Polarização de Fluorescência , Células HEK293 , HIV-1/genética , Humanos , Modelos Moleculares , Mutagênese , Mutação , Domínios Proteicos , RNA Viral/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Dedos de Zinco
5.
J Am Chem Soc ; 143(37): 15271-15278, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494819

RESUMO

The human long interspersed nuclear element 1 (LINE1) has been implicated in numerous diseases and has been suggested to play a significant role in genetic evolution. Open reading frame 1 protein (ORF1p) is one of the two proteins encoded in this self-replicating mobile genetic element, both of which are essential for retrotransposition. The structure of the three-stranded coiled-coil domain of ORF1p was recently solved and showed the presence of tris-cysteine layers in the interior of the coiled-coil that could function as metal binding sites. Here, we demonstrate that ORF1p binds Pb(II). We designed a model peptide, GRCSL16CL23C, to mimic two of the ORF1p Cys3 layers and crystallized the peptide both as the apo-form and in the presence of Pb(II). Structural comparison of the ORF1p with apo-(GRCSL16CL23C)3 shows very similar Cys3 layers, preorganized for Pb(II) binding. We propose that exposure to heavy metals, such as lead, could influence directly the structural parameters of ORF1p and thus impact the overall LINE1 retrotransposition frequency, directly relating heavy metal exposure to genetic modification.


Assuntos
Desoxirribonuclease I/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Chumbo/farmacologia , Cristalografia por Raios X , Desoxirribonuclease I/genética , Escherichia coli/metabolismo , Humanos , Chumbo/química , Modelos Moleculares , Fases de Leitura Aberta , Ligação Proteica , Conformação Proteica
6.
J Biol Chem ; 293(6): 2125-2136, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29263092

RESUMO

The transcription factor BCL11A has recently been reported to be a driving force in triple-negative breast cancer (TNBC), contributing to the maintenance of a chemoresistant breast cancer stem cell (BCSC) population. Although BCL11A was shown to suppress γ-globin and p21 and to induce MDM2 expression in the hematopoietic system, its downstream targets in TNBC are still unclear. For its role in transcriptional repression, BCL11A was found to interact with several corepressor complexes; however, the mechanisms underlying these interactions remain unknown. Here, we reveal that BCL11A interacts with histone methyltransferase (PRC2) and histone deacetylase (NuRD and SIN3A) complexes through their common subunit, RBBP4/7. In fluorescence polarization assays, we show that BCL11A competes with histone H3 for binding to the negatively charged top face of RBBP4. To define that interaction, we solved the crystal structure of RBBP4 in complex with an N-terminal peptide of BCL11A (residues 2-16, BCL11A(2-16)). The crystal structure identifies novel interactions between BCL11A and the side of the ß-propeller of RBBP4 that are not seen with histone H3. We next show that BCL11A(2-16) pulls down RBBP4, RBBP7, and other components of PRC2, NuRD, and SIN3A from the cell lysate of the TNBC cell line SUM149. Furthermore, we demonstrate the therapeutic potential of targeting the RBBP4-BCL11A binding by showing that a BCL11A peptide can decrease aldehyde dehydrogenase-positive BCSCs and mammosphere formation capacity in SUM149. Together, our findings have uncovered a previously unidentified mechanism that BCL11A may use to recruit epigenetic complexes to regulate transcription and promote tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Carcinogênese , Proteínas de Transporte/química , Linhagem Celular , Cristalografia por Raios X , Epigenômica , Histona Desacetilases/metabolismo , Histona Metiltransferases/metabolismo , Humanos , Proteínas Nucleares/química , Ligação Proteica , Proteínas Repressoras , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 7 de Ligação ao Retinoblastoma/química , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Chemistry ; 25(27): 6773-6787, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30861211

RESUMO

A challenging objective of de novo metalloprotein design is to control of the outer coordination spheres of an active site to fine tune metal properties. The well-defined three stranded coiled coils, TRI and CoilSer peptides, are used to address this question. Substitution of Cys for Leu yields a thiophilic site within the core. Metals such as HgII , PbII , and AsIII result in trigonal planar or trigonal pyramidal geometries; however, spectroscopic studies have shown that CdII forms three-, four- or five-coordinate CdII S3 (OH2 )x (in which x=0-2) when the outer coordination spheres are perturbed. Unfortunately, there has been little crystallographic examination of these proteins to explain the observations. Here, the high-resolution X-ray structures of apo- and mercurated proteins are compared to explain the modifications that lead to metal coordination number and geometry variation. It reveals that Ala substitution for Leu opens a cavity above the Cys site allowing for water excess, facilitating CdII S3 (OH2 ). Replacement of Cys by Pen restricts thiol rotation, causing a shift in the metal-binding plane, which displaces water, forming CdII S3 . Residue d-Leu, above the Cys site, reorients the side chain towards the Cys layer, diminishing the space for water accommodation yielding CdII S3 , whereas d-Leu below opens more space, allowing for equal CdII S3 (OH2 ) and CdII S3 (OH2 )2 . These studies provide insights into how to control desired metal geometries in metalloproteins by using coded and non-coded amino acids.

8.
J Am Chem Soc ; 140(37): 11661-11673, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30122033

RESUMO

Members of the heterogeneous nuclear ribonucleoprotein (hnRNP) F/H family are multipurpose RNA binding proteins that participate in most stages of RNA metabolism. Despite having similar RNA sequence preferences, hnRNP F/H proteins function in overlapping and, in some cases, distinct cellular processes. The domain organization of hnRNP F/H proteins is modular, consisting of N-terminal tandem quasi-RNA recognition motifs (F/HqRRM1,2) and a third C-terminal qRRM3 embedded between glycine-rich repeats. The tandem qRRMs are connected through a 10-residue linker, with several amino acids strictly conserved between hnRNP H and F. A significant difference occurs at position 105 of the linker, where hnRNP H contains a proline and hnRNP F an alanine. To investigate the influence of P105 on the conformational properties of hnRNP H, we probed the structural dynamics of its HqRRM1,2 domain with X-ray crystallography, NMR spectroscopy, and small-angle X-ray scattering. The collective results best describe that HqRRM1,2 exists in a conformational equilibrium between compact and extended structures. The compact structure displays an electropositive surface formed at the qRRM1-qRRM2 interface. Comparison of NMR relaxation parameters, including Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, between HqRRM1,2 and FqRRM1,2 indicates that FqRRM1,2 primarily adopts a more extended and flexible conformation. Introducing the P105A mutation into HqRRM1,2 alters its conformational dynamics to favor an extended structure. Thus, our work demonstrates that the linker compositions confer different structural properties between hnRNP F/H family members that might contribute to their functional diversity.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Motivo de Reconhecimento de RNA , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/isolamento & purificação , Humanos , Modelos Moleculares , Conformação Proteica
9.
Inorg Chem ; 57(19): 12291-12302, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226758

RESUMO

Cupredoxins are copper-dependent electron-transfer proteins that can be categorized as blue, purple, green, and red depending on the spectroscopic properties of the Cu(II) bound forms. Interestingly, despite significantly different first coordination spheres and nuclearity, all cupredoxins share a common Greek Key ß-sheet fold. We have previously reported the design of a red copper protein within a completely distinct three-helical bundle protein, α3DChC2. (1) While this design demonstrated that a ß-barrel fold was not requisite to recapitulate the properties of a native cupredoxin center, the parent peptide α3D was not sufficiently stable to allow further study through additional mutations. Here we present the design of an elongated protein GRANDα3D (GRα3D) with Δ Gu = -11.4 kcal/mol compared to the original design's -5.1 kcal/mol. Diffraction quality crystals were grown of GRα3D (a first for an α3D peptide) and solved to a resolution of 1.34 Å. Examination of this structure suggested that Glu41 might interact with the Cu in our previously reported red copper protein. The previous bis(histidine)(cysteine) site (GRα3DChC2) was designed into this new scaffold and a series of variant constructs were made to explore this hypothesis. Mutation studies around Glu41 not only prove the proposed interaction, but also enabled tuning of the constructs' hyperfine coupling constant from 160 to 127 × 10-4 cm-1. X-ray absorption spectroscopy analysis is consistent with these hyperfine coupling differences being the result of variant 4p mixing related to coordination geometry changes. These studies not only prove that an Glu41-Cu interaction leads to the α3DChC2 construct's red copper protein like spectral properties, but also exemplify the exact control one can have in a de novo construct to tune the properties of an electron-transfer Cu site.


Assuntos
Azurina/química , Bactérias/química , Cobre/química , Sequência de Aminoácidos , Azurina/síntese química , Modelos Moleculares , Nitrosomonas europaea/química , Estrutura Secundária de Proteína , Termodinâmica
10.
Glycobiology ; 27(1): 50-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558840

RESUMO

Tarin, the Colocasia esculenta lectin from the superfamily of α-d-mannose-specific plant bulb lectins, is a tetramer of 47 kDa composed of two heterodimers. Each heterodimer possesses homologous monomers of ~11.9 (A chain) and ~12.7 (B chain) kDa. The structures of apo and carbohydrate-bound tarin were solved to 1.7 Å and 1.91 Å, respectively. Each tarin monomer forms a canonical ß-prism II fold, common to all members of Galanthus nivalis agglutinin (GNA) family, which is partially stabilized by a disulfide bond and a conserved hydrophobic core. The heterodimer is formed through domain swapping involving the C-terminal ß-strand and the ß-sheet on face I of the prism. The tetramer is assembled through the dimerization of the B chains from heterodimers involving face II of each prism. The 1.91 Å crystal structure of tarin bound to Manα(1,3)Manα(1,6)Man reveals an expanded carbohydrate-binding sequence (QxDxNxVxYx4/6WX) on face III of the ß-prism. Both monomers possess a similar fold, except for the length of the loop, which begins after the conserved tyrosine and creates the binding pocket for the α(1,6)-terminal mannose. This loop differs in size and amino-acid composition from 10 other ß-prism II domain proteins, and may confer carbohydrate-binding specificity among members of the GNA-related lectin family.


Assuntos
Colocasia/química , Globulinas/química , Lectinas de Ligação a Manose/química , Proteínas de Plantas/química , Sequência de Aminoácidos/genética , Sítios de Ligação , Cristalografia por Raios X , Globulinas/genética , Lectinas de Ligação a Manose/genética , Modelos Moleculares , Proteínas de Plantas/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos
11.
Chemistry ; 23(34): 8232-8243, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28384393

RESUMO

Although metal ion binding to naturally occurring l-amino acid proteins is well documented, understanding the impact of the opposite chirality (d-)amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a d-configuration cysteine within a designed l-amino acid three-stranded coiled coil in order to enforce a precise coordination number on a metal center. The d chirality does not alter the native fold, but the side-chain re-orientation modifies the sterics of the metal binding pocket. l-Cys side chains within the coiled-coil structure have previously been shown to rotate substantially from their preferred positions in the apo structure to create a binding site for a tetra-coordinate metal ion. However, here we show by X-ray crystallography that d-Cys side chains are preorganized within a suitable geometry to bind such a ligand. This is confirmed by comparison of the structure of ZnII Cl(CSL16D C)32- to the published structure of ZnII (H2 O)(GRAND-CSL12AL16L C)3- . Moreover, spectroscopic analysis indicates that the CdII geometry observed by using l-Cys ligands (a mixture of three- and four-coordinate CdII ) is altered to a single four-coordinate species when d-Cys is present. This work opens a new avenue for the control of the metal site environment in man-made proteins, by simply altering the binding ligand with its mirror-imaged d configuration. Thus, the use of non-coded amino acids in the coordination sphere of a metal promises to be a powerful tool for controlling the properties of future metalloproteins.

12.
Biochim Biophys Acta ; 1854(1): 20-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448725

RESUMO

The lectins, a class of proteins that occur widely in animals, plants, fungi, lichens and microorganisms, are known for their ability to specifically bind to carbohydrates. Plant lectins can be classified into 12 families including the Galanthus nivalis agglutinin (GNA)-related lectin superfamily, which is widespread among monocotyledonous plants and binds specifically to mannose, a behavior that confers remarkable anti-tumor, anti-viral and insecticidal properties on these proteins. The present study characterized a mitogenic lectin from this family, called tarin, which was purified from the crude extract from taro (Colocasia esculenta). The results showed that tarin is a glycoprotein with 2-3% carbohydrate content, composed of least 10 isoforms with pIs ranging from 5.5 to 9.5. The intact protein is a heterotetramer of 47kDa composed of two non-identical and non-covalently associated polypeptides, with small subunits of 11.9kDa and large subunits of 12.6kDa. The tarin structure is stable and recovers or maintains its functional structure following treatments at different temperatures and pH. Tarin showed a complex carbohydrate specificity, binding with high affinity to high-mannose and complex N-glycans. Many of these ligands can be found in viruses, tumor cells and insects, as well as in hematopoietic progenitor cells. Chemical modifications confirmed that both conserved and non-conserved amino acids participate in this interaction. This study determined the structural and ligand binding characteristics of a GNA-related lectin that can be exploited for several different purposes, particularly as a proliferative therapeutic molecule that is able to enhance the immunological response.


Assuntos
Colocasia/metabolismo , Globulinas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Carboidratos , Cromatografia em Gel , Cisteína/química , Cisteína/metabolismo , Eletroforese em Gel Bidimensional , Globulinas/química , Globulinas/isolamento & purificação , Temperatura Alta , Concentração de Íons de Hidrogênio , Lectinas de Ligação a Manose/química , Dados de Sequência Molecular , Peso Molecular , Lectinas de Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Tubérculos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química , Triptofano/metabolismo
13.
J Am Chem Soc ; 138(36): 11979-88, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27532255

RESUMO

Preorganization and predisposition are important molecular recognition concepts exploited by nature to obtain site-specific and selective metal binding to proteins. While native structures containing an MS3 core are often unavailable in both apo- and holo-forms, one can use designed three-stranded coiled coils (3SCCs) containing tris-thiolate sites to evaluate these concepts. We show that the preferred metal geometry dictates the degree to which the cysteine rotamers change upon metal complexation. The Cys ligands in the apo-form are preorganized for binding trigonal pyramidal species (Pb(II)S3 and As(III)S3) in an endo conformation oriented toward the 3SCC C-termini, whereas the cysteines are predisposed for trigonal planar Hg(II)S3 and 4-coordinate Zn(II)S3O structures, requiring significant thiol rotation for metal binding. This study allows assessment of the importance of protein fold and side-chain reorientation for achieving metal selectivity in human retrotransposons and metalloregulatory proteins.


Assuntos
Metaloproteínas/química , Metaloproteínas/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Zinco/metabolismo
14.
J Chem Inf Model ; 56(6): 1022-31, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-26419257

RESUMO

Community Structure-Activity Resource (CSAR) conducted a benchmark exercise to evaluate the current computational methods for protein design, ligand docking, and scoring/ranking. The exercise consisted of three phases. The first phase required the participants to identify and rank order which designed sequences were able to bind the small molecule digoxigenin. The second phase challenged the community to select a near-native pose of digoxigenin from a set of decoy poses for two of the designed proteins. The third phase investigated the ability of current methods to rank/score the binding affinity of 10 related steroids to one of the designed proteins (pKd = 4.1 to 6.7). We found that 11 of 13 groups were able to correctly select the sequence that bound digoxigenin, with most groups providing the correct three-dimensional structure for the backbone of the protein as well as all atoms of the active-site residues. Eleven of the 14 groups were able to select the appropriate pose from a set of plausible decoy poses. The ability to predict absolute binding affinities is still a difficult task, as 8 of 14 groups were able to correlate scores to affinity (Pearson-r > 0.7) of the designed protein for congeneric steroids and only 5 of 14 groups were able to correlate the ranks of the 10 related ligands (Spearman-ρ > 0.7).


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Sequência de Aminoácidos , Benchmarking , Digoxigenina/química , Digoxigenina/metabolismo , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/química , Relação Estrutura-Atividade
15.
J Chem Inf Model ; 56(6): 1063-77, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27149958

RESUMO

The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) donated unpublished crystal structures and affinity data from in-house projects. Three targets were used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa (FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, participants were given several protein-ligand complexes and asked to identify the one near-native pose from among 200 decoys provided by CSAR. Though decoys were requested by the community, we found that they complicated our analysis. We could not discern whether poor predictions were failures of the chosen method or an incompatibility between the participant's method and the setup protocol we used. This problem is inherent to decoys, and we strongly advise against their use. In Phase 2, participants had to dock and rank/score a set of small molecules given only the SMILES strings of the ligands and a protein structure with a different ligand bound. Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. However, scoring was a greater challenge. No particular approach to docking and scoring had an edge, and successful methods included empirical, knowledge-based, machine-learning, shape-fitting, and even those with solvation and entropy terms. Several groups were successful in ranking TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were able to dock well across all submitted systems include MDock,1 Glide-XP,2 PLANTS,3 Wilma,4 Gold,5 SMINA,6 Glide-XP2/PELE,7 FlexX,8 and MedusaDock.9 In fact, the submission based on Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly impressive to see success across an ensemble of protein structures for multiple targets. For scoring/ranking, submissions that showed statistically significant achievement include MDock1 using ITScore1,10 with a flexible-ligand term,11 SMINA6 using Autodock-Vina,12,13 FlexX8 using HYDE,14 and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity.16 Of course, these results are for only three protein targets, and many more systems need to be investigated to truly identify which approaches are more successful than others. Furthermore, our exercise is not a competition.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Benchmarking , Bases de Dados de Produtos Farmacêuticos , Fator Xa/química , Fator Xa/metabolismo , Ligantes , Conformação Proteica , Proteínas/química , Relação Estrutura-Atividade , Quinase Syk/química , Quinase Syk/metabolismo , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
16.
J Comput Aided Mol Des ; 30(9): 651-668, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27696240

RESUMO

The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (1) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (2) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP90/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade
17.
Proc Natl Acad Sci U S A ; 110(51): E4941-9, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297881

RESUMO

Plasminogen activator inhibitor type-1 (PAI-1) is a member of the serine protease inhibitor (serpin) family. Excessive PAI-1 activity is associated with human disease, making it an attractive pharmaceutical target. However, like other serpins, PAI-1 has a labile structure, making it a difficult target for the development of small molecule inhibitors, and to date, there are no US Food and Drug Administration-approved small molecule inactivators of any serpins. Here we describe the mechanistic and structural characterization of a high affinity inactivator of PAI-1. This molecule binds to PAI-1 reversibly and acts through an allosteric mechanism that inhibits PAI-1 binding to proteases and to its cofactor vitronectin. The binding site is identified by X-ray crystallography and mutagenesis as a pocket at the interface of ß-sheets B and C and α-helix H. A similar pocket is present on other serpins, suggesting that this site could be a common target in this structurally conserved protein family.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Regulação Alostérica , Cristalografia por Raios X , Humanos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Vitronectina/química , Vitronectina/genética , Vitronectina/metabolismo
18.
J Biol Chem ; 289(22): 15527-35, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24742680

RESUMO

UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(acyl)-glucosamine acyltransferase (LpxD) constitute the essential, early acyltransferases of lipid A biosynthesis. Recently, an antimicrobial peptide inhibitor, RJPXD33, was identified with dual affinity for LpxA and LpxD. To gain a fundamental understanding of the molecular basis of inhibitor binding, we determined the crystal structure of LpxA from Escherichia coli in complex with RJPXD33 at 1.9 Å resolutions. Our results suggest that the peptide binds in a unique modality that mimics (R)-ß-hydroxyacyl pantetheine binding to LpxA and displays how the peptide binds exclusive of the native substrate, acyl-acyl carrier protein. Acyltransferase binding studies with photo-labile RJPXD33 probes and truncations of RJPXD33 validated the structure and provided fundamental insights for future design of small molecule inhibitors. Overlay of the LpxA-RJPXD33 structure with E. coli LpxD identified a complementary peptide binding pocket within LpxD and serves as a model for further biochemical characterization of RJPXD33 binding to LpxD.


Assuntos
Aciltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Lipídeo A/biossíntese , Peptídeos/metabolismo , Proteína de Transporte de Acila/metabolismo , Aciltransferases/química , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II/metabolismo , Modelos Moleculares , Panteteína/metabolismo , Peptídeos/química , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 109(13): 4810-5, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411812

RESUMO

Noncanonical amino acids have proved extremely useful for modifying the properties of proteins. Among them, extensively fluorinated (fluorous) amino acids seem particularly effective in increasing protein stability; however, in the absence of structural data, the basis of this stabilizing effect remains poorly understood. To address this problem, we solved X-ray structures for three small proteins with hydrophobic cores that are packed with either fluorocarbon or hydrocarbon side chains and compared their stabilities. Although larger, the fluorinated residues are accommodated within the protein with minimal structural perturbation, because they closely match the shape of the hydrocarbon side chains that they replace. Thus, stability increases seem to be better explained by increases in buried hydrophobic surface area that accompany fluorination than by specific fluorous interactions between fluorinated side chains. This finding is illustrated by the design of a highly fluorinated protein that, by compensating for the larger volume and surface area of the fluorinated side chains, exhibits similar stability to its nonfluorinated counterpart. These structure-based observations should inform efforts to rationally modulate protein function using noncanonical amino acids.


Assuntos
Halogenação , Proteínas/química , Proteínas/metabolismo , Aminoácidos/metabolismo , Fluorocarbonos/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
20.
Res Sq ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883705

RESUMO

Mutations in RNA splicing factor genes including SF3B1, U2AF1, SRSF2, and ZRSR2 have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1mut) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1wt) to change various gene isoform patterns to support MDS cells survival and proliferation. U2AF1 mutations in MDS cells are always heterozygous and the cell viability is reduced when exposed to additional insult affecting U2AF1wt function. To investigate if the pharmacological inhibition of U2AF1wt function can provoke drug-induced vulnerability of cells harboring U2AF1 mut , we conducted a fragment-based library screening campaign to discover compounds targeting the U2AF homology domain (UHM) in U2AF1 that is required for the formation of the U2AF1/U2AF2 complex to define the 3' splice site. The most promising hit (SF1-8) selectively inhibited growth of leukemia cell lines overexpressingU2AF1 mut and human primary MDS cells carrying U2AF1 mut . RNA-seq analysis of K562-U2AF1mut following treatment with SF1-8 further revealed alteration of isoform patterns for a set of proteins that impair or rescue pathways associated with endocytosis, intracellular vesicle transport, and secretion. Our data suggested that further optimization of SF1-8 is warranted to obtain chemical probes that can be used to evaluate the therapeutic concept of inducing lethality to U2AF1 mut cells by inhibiting the U2AF1wt protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA