Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(18): 13694-13709, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38666410

RESUMO

Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful tool for performing broadband gas-phase rotational spectroscopy, and its applications include discovery of new molecules, complex mixture analysis, and exploration of fundamental molecular physics. Here we report the development of a new Ka band (26.5-40 GHz) CP-FTMW spectrometer that is equipped with a pulsed supersonic expansion source and a heated reservoir for low-volatility samples. The spectrometer is built around a 150 W traveling wave tube amplifier and has an instantaneous bandwidth that covers the entire Ka band spectral range. To test the performance of the spectrometer, the rotational spectrum of methyl tert-butyl ether (MTBE), a former gasoline additive and environmental pollutant, has been measured for the first time in this spectral range. Over 1000 spectroscopic transitions have been measured and assigned to the vibrational ground state and a newly-identified torsionally excited state; all transitions were fit using the XIAM program to a root-mean-square deviation of 22 kHz. The spectrum displays internal rotation splitting, nominally forbidden transitions, and an intriguing axis-switching effect between the ground and torsionally excited state that is a consequence of MTBE's extreme near-prolate nature. Finally, the sensitivity of the spectrometer enabled detection of all singly-substituted 13C and 18O isotopologues in natural abundance. This set of isotopic spectra allowed for a partial r0 structure involving the heavy atoms to be derived, resolving a structural discrepancy in the literature between previous microwave and electron diffraction measurements.

2.
J Am Chem Soc ; 138(25): 7951-64, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27276098

RESUMO

Fluorinated tyrosines (FnY's, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y's, a stable Y radical (Y·) in the ß subunit (position 122 in E. coli), and three transiently oxidized Y's (356 in ß and 731 and 730 in α) to initiate the radical-dependent nucleotide reduction process. FnY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-ß and the X-ray structures of each resulting ß with a diferric cluster are reported and compared with wt-ß2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-ß2, Fe(2+), and O2 to produce ∼1 Y·/ß2 and ∼3 Fe(3+)/ß2. The FnY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-ß2. Each FnY·-ß2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the (19)F nucleus provide unique signatures of each FnY· that are readily distinguishable from unlabeled Y·'s. The variability of the abiotic FnY pKa's (6.4 to 7.8) and reduction potentials (-30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·'s in catalysis and to investigate the importance and identity of hopping Y·'s within redox active proteins proposed to protect them from uncoupled radical chemistry.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Exorribonucleases/química , Flúor/química , Methanocaldococcus/enzimologia , Ribonucleotídeo Redutases/química , Tirosina/química , Aminoacil-tRNA Sintetases/metabolismo , Sítios de Ligação , Catálise , Simulação por Computador , Cristalização , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Radicais Livres/química , Ligação de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Methanocaldococcus/genética , Modelos Moleculares , Oxirredução , Oxigênio/química , Fosforilação , RNA de Transferência/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA