Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Retrovirology ; 8: 11, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324168

RESUMO

BACKGROUND: The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L-) domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX), is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. RESULTS: Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF) reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA) and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. CONCLUSIONS: Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively affects CA maturation and virus core formation, and consequently the infectivity of released virions.


Assuntos
Capsídeo/metabolismo , Serina/genética , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Células Cultivadas , Regulação Viral da Expressão Gênica , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Linfócitos T , Vírion/metabolismo , Vírion/ultraestrutura , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
2.
Cell Microbiol ; 11(10): 1502-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19523156

RESUMO

The 11(th) influenza A virus (IAV) protein PB1-F2 is encoded by an alternative reading frame of the PB1 polymerase gene and found in the nucleus, cytosol and at the mitochondria of infected cells, the latter is consistent with experimental evidence for its pro-apoptotic function. Here, the function of PB1-F2 as a phosphoprotein was characterized. PB1-F2 derived from isolate IAV(PR8) and synthetic fragments thereof were phosphorylated in vitro by purified protein kinase C (PKC) and cellular extract. Constitutively active PKCalpha interacts with PB1-F2 in yeast two-hybrid assays. (32)P radiolabelling of transfected 293T cells revealed that phosphorylation of PB1-F2 is sensitive to inhibitors of PKC and could be increased by the PKC activator PMA. ESI-MS analysis and cellular expression of PB1-F2 mutants identified the positions Ser-35 as the major and the Thr-27 as an alternative PKC phosphorylation site. Infection of MDCK cells with recombinant IAV(PR8) lacking these PKC sites abrogated phosphorylation of PB1-F2 in vivo. Furthermore, infection of primary human monocytes with mutant viruses lacking these PB1-F2 phosphorylation sites resulted in impaired caspase 3 activation and reduced progeny virus titres, indicating that the integrity of the identified phosphorylation sites is crucial for a cell-specific function of PB1-F2 during virus replication.


Assuntos
Apoptose , Vírus da Influenza A/patogenicidade , Monócitos/imunologia , Proteína Quinase C/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Fosforilação , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
3.
J Pept Sci ; 14(8): 954-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18381743

RESUMO

The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian isolates. Previous synthetic protocols have been improved to provide a synthetic full length H1N1 type PB1-F2 protein that is encoded by the 'Spanish flu' isolate and an equivalent protein from an avian host that is representative of a highly pathogenic H5N1 'bird flu' isolate, termed SF2 and BF2, respectively. Full length SF2, different mutants of BF2 and a number of fragments of these peptides have been synthesized by either the standard solid-phase peptide synthesis method or by native chemical ligation of unprotected N- and C-terminal peptide fragments. For SF2 chemical ligation made use of the histidine and the cysteine residues located in positions 41 and 42 of the native sequence, respectively, to afford a highly efficient synthesis of SF2 compared to the standard SPPS elongation method. By-product formation at the aspartic acid residue in position 23 was prevented by specific modifications of the SPPS protocol. As the native sequence of BF2 does not contain a cysteine residue two different mutants of BF2 (Y42C) and BF2 (S47C) with appropriate cysteine exchanges were produced. In addition to the full length molecules, fragments of the native sequences were synthesized for comparison of their physical characteristics with those from the H1N1 human isolate A/Puerto Rico/8/34 (H1N1). All peptides were analyzed by mass spectrometry, (1)H NMR spectroscopy, and SDS-PAGE. The protocols allow the synthesis of significant amounts of PB1-F2 and its related peptides.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Virus da Influenza A Subtipo H5N1/química , Influenza Aviária , Influenza Humana , Proteínas Virais/síntese química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Aves , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Dados de Sequência Molecular , Peso Molecular , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo , Proteínas Virais/química , Proteínas Virais/isolamento & purificação
4.
J Biol Chem ; 282(1): 353-63, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17052982

RESUMO

Recently, a novel 87-amino acid influenza A virus protein with proapoptotic properties, PB1-F2, has been reported that originates from an alternative reading frame in the PB1 polymerase gene and is encoded in most known human influenza A virus isolates. Here we characterize the molecular structure of a biologically active synthetic version of the protein (sPB1-F2). Western blot analysis, chemical cross-linking, and NMR spectroscopy afforded direct evidence of the inherent tendency of sPB1-F2 to undergo oligomerization mediated by two distinct domains located in the N and C termini, respectively. CD and (1)H NMR spectroscopic analyses indicate that the stability of structured regions in the molecule clearly depends upon the hydrophobicity of the solvent. In aqueous solutions, the behavior of sPB1-F2 is typical of a largely random coil peptide that, however, adopts alpha-helical structure upon the addition of membrane mimetics. (1)H NMR analysis of three overlapping peptides afforded, for the first time, direct experimental evidence of the presence of a C-terminal region with strong alpha-helical propensity comprising amino acid residues Ile(55)-Lys(85) connected via an essentially random coil structure to a much weaker helix-like region, located in the N terminus between residues Trp(9) and Lys(20). The C-terminal helix is not a true amphipathic helix and is more compact than previously predicted. It corresponds to a positively charged region previously shown to include the mitochondrial targeting sequence of PB1-F2. The consequences of the strong oligomerization and helical propensities of the molecule are discussed and used to formulate a hypothetical model of its interaction with the mitochondrial membrane.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Dicroísmo Circular , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes/química , Triptofano/química , Proteínas Virais/metabolismo
5.
J Virol ; 81(17): 9572-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17553868

RESUMO

Mutational analysis of the four conserved proline residues in human immunodeficiency virus type 1 (HIV-1) Vpr reveals that only Pro-35 is required for efficient replication of R5-tropic, but not of X4-tropic, viruses in human lymphoid tissue (HLT) cultivated ex vivo. While Vpr-mediated apoptosis and G(2) cell cycle arrest, as well as the expression and subcellular localization of Vpr, were independent, the capacity for encapsidation of Vpr into budding virions was dependent on Pro-35. (1)H nuclear magnetic resonance data suggest that mutation of Pro-35 causes a conformational change in the hydrophobic core of the molecule, whose integrity is required for the encapsidation of Vpr, and thus, Pro-35 supports the replication of R5-tropic HIV-1 in HLT.


Assuntos
Produtos do Gene vpr/fisiologia , HIV-1/crescimento & desenvolvimento , Tecido Linfoide/virologia , Estrutura Secundária de Proteína/genética , Replicação Viral/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Produtos do Gene vpr/química , Produtos do Gene vpr/genética , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Prolina , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA