Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Primatol ; 81(10-11): e23060, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31608486

RESUMO

Primate microbiome research is a quickly growing field with exciting potential for informing our understanding of primate biology, ecology, and evolution as well as host-microbe interactions more broadly. This introductory essay to a special section of the American Journal of Primatology provides a cross-sectional snapshot of current activity in these areas by briefly summarizing the diversity of contributed papers and their relationships to key themes in host-associated microbiome research. It then uses this survey as a foundation for consolidating a set of key research questions to broadly guide future research. It also argues for the importance of methods standardization to facilitate comparative analyses and the identification of generalizable patterns and relationships. While primatology will benefit greatly from the integration of microbial datasets, it is uniquely positioned to address important questions regarding microbiology and macro-ecology and evolution more generally. We are eager to see where the primate microbiome leads us.


Assuntos
Microbiota , Primatas/microbiologia , Animais , Evolução Biológica , Ecologia , Interações entre Hospedeiro e Microrganismos
2.
Am J Primatol ; 81(10-11): e23046, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31478232

RESUMO

Deforestation continues to jeopardize Malagasy primates as viable habitats become smaller, more fragmented, and more disturbed. This deforestation can lead to changes in diet, microhabitat, and gene flow between populations of endangered species, and it remains unclear how these changes may affect gut microbiome (GM) characteristics. The black-and-white ruffed lemur (Varecia variegata), which is among Madagascar's most threatened lemur species, provides a critical model for understanding the relationships between historical and on-going deforestation (habitat disturbance), feeding ecology, and GM composition and diversity. We studied four populations inhabiting two rainforests (relatively pristine vs. highly disturbed) in southeastern Madagascar. We conducted full-day focal animal behavioral follows and collected fecal samples opportunistically across a three-month period. Our results indicate that lemurs inhabiting sites characterized by habitat disturbance and low dietary diversity exhibited reduced gut microbial alpha diversity. We also show that these same factors were associated with high community dissimilarity using weighted and unweighted UniFrac metrics. Finally, an indicator species analysis showed that the most pristine site was characterized by an abundance of methanogenic archaea. While it is impossible to disentangle the relative contributions of each confounding variable presented by our sampling design, these results provide crucial information about GM variability, thereby underscoring the importance of monitoring endangered species at the population-level.


Assuntos
Ecossistema , Microbioma Gastrointestinal , Lemuridae/microbiologia , Animais , Archaea , Comportamento Animal , Biodiversidade , Dieta , Espécies em Perigo de Extinção , Fezes/microbiologia , Comportamento Alimentar , Feminino , Microbioma Gastrointestinal/fisiologia , Lemuridae/fisiologia , Madagáscar , Masculino , Floresta Úmida
3.
Am J Primatol ; 81(10-11): e23045, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31471974

RESUMO

The study of the primate microbiome is critical in understanding the role of the microbial community in the host organism. To be able to isolate the main factors responsible for the differences observed in microbiomes within and between individuals, confounding factors due to technical variations need to be removed. To determine whether alterations due to preservatives outweigh differences due to factors such as host population, host species, body site, and habitat, we tested three methods (no preservative, 96% ethanol, and RNAlater) for preserving wild chimpanzee (fecal), wild lemur (fecal), wild vervet monkey (rectal, oral, nasal, otic, vaginal, and penile), and captive vervet monkey (rectal) samples. All samples were stored below - 20°C (short term) at the end of the field day and then at - 80°C until DNA extraction. Using 16S rRNA gene sequencing, we show a significant preservative effect on microbiota composition and diversity. Samples stored in ethanol and RNAlater appear to be less different compared with samples not stored in any preservative (none). Our differential analysis revealed significantly higher amounts of Enterococcaceae and Family XI in no preservative samples, Prevotellaceae and Spirochaetaceae in ethanol and RNAlater preserved samples, Oligosphaeraceae in ethanol-preserved samples, and Defluviitaleaceae in RNAlater preserved samples. While these preservative effects on the microbiome are not large enough to remove or outweigh the differences arising from biological factors (e.g., host species, body site, and habitat differences) they may promote misleading interpretations if they have large enough effect sizes compared to the biological factors (e.g., host population).


Assuntos
Microbiota , Preservação Biológica/métodos , Manejo de Espécimes/veterinária , Animais , Chlorocebus aethiops/microbiologia , Feminino , Interações entre Hospedeiro e Microrganismos , Lemur/microbiologia , Masculino , Pan troglodytes/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Manejo de Espécimes/métodos
4.
Microbiology (Reading) ; 164(1): 40-44, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205130

RESUMO

Exposure to stressors can negatively impact the mammalian gastrointestinal microbiome (GIM). Here, we used 454 pyrosequencing of 16S rRNA bacterial gene amplicons to evaluate the impact of physiological stress, as evidenced by faecal glucocorticoid metabolites (FGCM; ng/g), on the GIM composition of free-ranging western lowland gorillas (Gorilla gorilla gorilla). Although we found no relationship between GIM alpha diversity (H) and FGCM levels, we observed a significant relationship between the relative abundances of particular bacterial taxa and FGCM levels. Specifically, members of the family Anaerolineaceae (ρ=0.4, FDR q=0.01), genus Clostridium cluster XIVb (ρ=0.35, FDR q=0.02) and genus Oscillibacter (ρ=0.35, FDR q=0.02) were positively correlated with FGCM levels. Thus, while exposure to stressors appears to be associated with minor changes in the gorilla GIM, the consequences of these changes are unknown. Our results may have implications for conservation biology as well as for our overall understanding of factors influencing the non-human primate GIM.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Gorilla gorilla/microbiologia , Estresse Fisiológico , Animais , Bactérias/genética , DNA Bacteriano , Fezes/química , Fezes/microbiologia , Glucocorticoides/análise , Gorilla gorilla/fisiologia , Modelos Estatísticos , RNA Ribossômico 16S , Análise de Sequência de DNA
5.
Microb Ecol ; 72(4): 943-954, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26984253

RESUMO

The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.


Assuntos
Antibacterianos/farmacologia , Doenças dos Símios Antropoides/tratamento farmacológico , Cefalosporinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Gorilla gorilla/microbiologia , Animais , Bacteroidetes/crescimento & desenvolvimento , República Centro-Africana , Fezes/microbiologia , Firmicutes/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Ruminococcus/crescimento & desenvolvimento
6.
Oecologia ; 180(3): 717-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26597549

RESUMO

Recent studies suggest that variation in diet across time and space results in changes in the mammalian gut microbiota. This variation may ultimately impact host ecology by altering nutritional status and health. Wild animal populations provide an excellent opportunity for understanding these interactions. However, compared to clinical studies, microbial research targeting wild animals is currently limited, and many published studies focus only on a single population of a single host species. In this study we utilize fecal samples from two species of howler monkey (Alouatta pigra and A. palliata) collected at four sites to investigate factors influencing the gut microbiota at three scales: taxonomic (host species), ecosystemic (forest type), and local (habitat disturbance/season). The results demonstrate that the effect of host species on the gut microbiota is stronger than the effect of host forest type, which is stronger than the effect of habitat disturbance or seasonality. Nevertheless, within host species, gut microbiota composition differs in response to forest type, habitat disturbance, and season. Variations in the effect size of these factors are associated both with host species and environment. This information may be beneficial for understanding ecological and evolutionary questions associated with Mesoamerican howler monkeys, as well as determining conservation challenges facing each species. These mechanisms may also provide insight into the ecology of other species of howler monkeys, non-human primates, and mammals.


Assuntos
Alouatta/microbiologia , Ecossistema , Microbioma Gastrointestinal , Filogenia , Animais , Dieta , Fezes/microbiologia , Florestas , Estações do Ano
7.
Am J Primatol ; 78(8): 883-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27177345

RESUMO

The gut microbiota contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. The composition of the gut microbiota can change dramatically within and between individuals of a species as a result of diet, age, or habitat. Therefore, understanding the factors determining gut microbiota diversity and composition can contribute to our knowledge of host ecology as well as to conservation efforts. Here we use high-throughput sequencing to describe variation in the gut microbiota of the endangered ring-tailed lemur (Lemur catta) at the Bezà Mahafaly Special Reserve (BMSR) in southwestern Madagascar. Specifically, we measured the diversity and composition of the gut microbiota in relation to social group, age, sex, tooth wear and loss, and habitat disturbance. While we found no significant variation in the diversity of the ring-tailed lemur gut microbiota in response to any variable tested, the taxonomic composition of the gut microbiota was influenced by social group, age, and habitat disturbance. However, effect sizes were small and appear to be driven by the presence or absence of relatively low abundance taxa. These results suggest that habitat disturbance may not impact the lemur gut microbiota as strongly as it impacts the gut microbiota of other primate species, highlighting the importance of distinct host ecological and physiological factors on host-gut microbe relationships. Am. J. Primatol. 78:883-892, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Ecossistema , Microbioma Gastrointestinal , Lemur , Animais , Madagáscar , Comportamento Social , Desgaste dos Dentes
8.
Mol Ecol ; 24(10): 2551-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25846719

RESUMO

The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.


Assuntos
Fezes/microbiologia , Gorilla gorilla/microbiologia , Microbiota , Animais , República Centro-Africana , DNA Bacteriano/genética , Dieta/veterinária , Ácidos Graxos/análise , Fezes/química , Comportamento Alimentar , Geografia , Metabolômica
9.
Microb Ecol ; 69(2): 434-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524570

RESUMO

For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.


Assuntos
Alouatta/microbiologia , Dieta/veterinária , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Comportamento Alimentar , Feminino , Frutas , Masculino , México , Folhas de Planta , Estações do Ano
10.
Am J Primatol ; 77(10): 1075-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119266

RESUMO

Sexually transmitted diseases (STDs) can persist endemically, are known to cause sterility and infant mortality in humans, and could have similar impacts in wildlife populations. African apes (i.e., chimpanzees, bonobos, and to a lesser extent gorillas) show multi-male mating behavior that could offer opportunities for STD transmission, yet little is known about the prevalence and impact of STDs in this endangered primate group. We used serology and PCR-based detection methods to screen biological samples from wild and orphaned eastern chimpanzees and gorillas (N = 172 individuals, including adults, and juveniles) for four classes of pathogens that either commonly cause human STDs or were previously detected in captive apes: trichomonads, Chlamydia spp., Treponema pallidum (syphilis and yaws), and papillomaviruses. Based on results from prior modeling and comparative research, we expected STD prevalence to be highest in females versus males and in sexually mature versus immature individuals. All samples were negative for Chlamydia, Treponema pallidum, and papillomaviruses; however, a high percentage of wild chimpanzee urine and fecal samples showed evidence of trichomonads (protozoa). Analysis revealed that females were more likely than males to have positive urine-but not fecal-samples; however, there was no evidence of age (sexual maturity) differences in infection status. Sequence analysis of chimpanzee trichomonad samples revealed a close relationship to previously described trichomonads within the genus Tetratrichomonas. Phylogenetic comparisons to archived sequences from multiple vertebrate hosts suggests that many of the chimpanzee parasites from our study are likely transmitted via fecal-oral contact, but the transmission of some Tetratrichomonas sequence-types remains unknown and could include sexual contact. Our work emphasizes that only a fraction of infectious agents affecting wild apes are presently known to science, and that further work on great ape STDs could offer insights for the management of endangered great apes and for understanding human STD origins.


Assuntos
Chlamydia/isolamento & purificação , Papillomaviridae/isolamento & purificação , Doenças dos Primatas/parasitologia , Infecções Sexualmente Transmissíveis/veterinária , Treponema pallidum/isolamento & purificação , Trichomonadida/isolamento & purificação , Animais , Fezes/parasitologia , Feminino , Gorilla gorilla , Masculino , Pan troglodytes , Prevalência , Doenças dos Primatas/microbiologia , Doenças dos Primatas/virologia , Infecções Protozoárias em Animais , Fatores Sexuais , Urina/parasitologia
11.
Am J Phys Anthropol ; 154(1): 52-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24420235

RESUMO

Behavioral flexibility allows primates to cope with environmental variability. Quantifying primate responses to human habitat modifications allows an effective means of assessing coping mechanisms. Within Kibale National Park, Uganda, logging led to reduced primate food availability that still exists almost 50 years after the harvest. Following the predictions of the ideal free distribution theory, primate densities are expected to decrease in areas of lower resource availability so that the resources available per individual are equivalent in logged and old-growth areas. However, counter to what would be predicted by the ideal free distribution theory, red colobus monkeys (Procolobus rufomitratus) occur at similar densities in logged and old-growth areas of Kibale. This suggests that either the ecological differences between the two areas are not sufficient to impact red colobus densities or that animals in logged areas are compensating to changes in resource availability by using different foraging strategies. To test between these hypotheses, we examined four groups of red colobus, two in logged and two in old-growth forests, and compared feeding behavior, feeding tree size, and tree productivity. Females in logged areas fed on resources from a greater number of plant species, fed on fewer resources from each species, and spent more time feeding than those in old-growth areas. By expanding their diet, females in logged areas effectively increased the resources available to them, which may contribute to their ability to maintain similar densities to females in old-growth areas. These findings have implications for an evolutionary understanding of how species deal with environmental change and considerations for conservation practices that determine what areas should be prioritized for protection.


Assuntos
Colobus/fisiologia , Ecologia , Comportamento Alimentar/fisiologia , Animais , Antropologia Física , Feminino , Masculino , Uganda
12.
Am J Phys Anthropol ; 155(4): 652-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25252073

RESUMO

In all mammals, growth, development, pregnancy, and lactation increase nutritional demands. Although primate field studies tend to focus on shifts in activity and diet as mechanisms to compensate for these demands, differences in digestive efficiency also are likely to be important. Because the gut microbiota can impact host digestive efficiency, we examined differences in activity budget, diet, and the gut microbial community among adult male (N = 4), adult female (N = 4), and juvenile (N = 5) wild black howler monkeys (Alouatta pigra) across a ten-month period in Palenque National Park, Mexico to determine how adult females and juveniles compensate for increased nutritional demands. Results indicate that adult females and juveniles consumed more protein and energy than adult males. Adult males, adult females, and juveniles also possessed distinct gut microbial communities, unrelated to diet. Juveniles exhibited a gut microbiota characterized by bacteria from the phylum Firmicutes, such as Roseburia and Ruminococcus, and demonstrated high fecal volatile fatty acid content, suggesting increased microbial contributions to host energy balances. Adult females possessed a higher Firmicutes to Bacteroidetes ratio, also suggesting increased energy production, and their gut microbiota was characterized by Lactococcus, which has been associated with folate biosynthesis. On the basis of these patterns, it appears that the gut microbiota differentially contributes to howler monkey nutrition during reproduction and growth. Determining the nutritional and energetic importance of shifts in activity, diet, and the gut microbiota in other nonhuman primate taxa, as well as humans, will transform our understanding of these life history processes and the role of host-microbe relationships in primate evolution.


Assuntos
Alouatta/microbiologia , Alouatta/fisiologia , Comportamento Animal/fisiologia , Dieta , Ingestão de Energia/fisiologia , Trato Gastrointestinal/microbiologia , Ciclos de Atividade , Aminoácidos/análise , Animais , Carboidratos/análise , Ácidos Graxos/análise , Fezes/química , Fezes/microbiologia , Feminino , Masculino , Microbiota
13.
J Anim Ecol ; 82(5): 976-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23734782

RESUMO

1. Heterogeneity in host association patterns can alter pathogen transmission and strategies for control. Great apes are highly social and endangered animals that have experienced substantial population declines from directly transmitted pathogens; as such, network approaches to quantify contact heterogeneity could be crucially important for predicting infection probability and outbreak size following pathogen introduction, especially owing to challenges in collecting real-time infection data for endangered wildlife. 2. We present here the first study using network analysis to quantify contact heterogeneity in wild apes, with applications for predicting community-wide infectious disease risk. Specifically, within a wild chimpanzee community, we ask how associations between individuals vary over time, and we identify traits of highly connected individuals that might contribute disproportionately to pathogen spread. 3. We used field observations of behavioural encounters in a habituated wild chimpanzee community in Kibale National Park, Uganda to construct monthly party level (i.e. subgroup) and close-contact (i.e. ≤ 5 m) association networks over a 9-month period. 4. Network analysis revealed that networks were highly dynamic over time. In particular, oestrous events significantly increased pairwise party associations, suggesting that community-wide disease outbreaks should be more likely to occur when many females are in oestrus. 5. Bayesian models and permutation tests identified traits of chimpanzees that were highly connected within the network. Individuals with large families (i.e. mothers and their juveniles) that range in the core of the community territory and to a lesser extent high-ranking males were central to association networks, and thus represent the most important individuals to target for disease intervention strategies. 6. Overall, we show striking temporal variation in network structure and traits that predict association patterns in a wild chimpanzee community. These empirically-derived networks can inform dynamic models of pathogen transmission and have practical applications for infectious disease management of endangered wildlife species.


Assuntos
Doenças Transmissíveis/transmissão , Pan troglodytes , Meio Social , Animais , Teorema de Bayes , Dieta , Espécies em Perigo de Extinção , Fatores Epidemiológicos , Feminino , Masculino , Ciclo Menstrual/fisiologia , Modelos Biológicos , Modelos Teóricos , Medição de Risco , Fatores de Risco , Predomínio Social , Uganda
14.
Am J Phys Anthropol ; 152 Suppl 57: 119-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24166771

RESUMO

The primate body hosts trillions of microbes. Interactions between primate hosts and these microbes profoundly affect primate physiology, reproduction, health, survival, and ultimately, evolution. It is increasingly clear that primate health cannot be understood fully without knowledge of host-microbial interactions. Our goals here are to review what is known about microbiomes of the female reproductive tract and to explore several factors that influence variation within individuals, as well as within and between primate species. Much of our knowledge of microbial variation derives from studies of humans, and from microbes located in nonreproductive regions (e.g., the gut). We review work suggesting that the vaginal microbiota affects female health, fecundity, and pregnancy outcomes, demonstrating the selective potential for these agents. We explore the factors that correlate with microbial variation within species. Initial colonization by microbes depends on the manner of birth; most microbial variation is structured by estrogen levels that change with age (i.e., at puberty and menopause) and through the menstrual cycle. Microbial communities vary by location within the vagina and can depend on the sampling methods used (e.g., swab, lavage, or pap smear). Interindividual differences also exist, and while this variation is not completely understood, evidence points more to differences in estrogen levels, rather than differences in external physical environment. When comparing across species, reproductive-age humans show distinct microbial communities, generally dominated by Lactobacillus, unlike other primates. We develop evolutionary hypotheses to explain the marked differences in microbial communities. While much remains to be done to test these hypotheses, we argue that the ample variation in primate mating and reproductive behavior offers excellent opportunities to evaluate host-microbe coevolution and adaptation.


Assuntos
Microbiota , Primatas/microbiologia , Primatas/fisiologia , Vagina/microbiologia , Animais , Antropologia Física , Evolução Biológica , Doença , Feminino , Humanos
16.
Microbiol Spectr ; 10(3): e0164321, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35587638

RESUMO

The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Mamíferos , Filogenia , Primatas/microbiologia
17.
Evol Anthropol ; 20(2): 62-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22034105

RESUMO

Sexual conflict is increasingly recognized as a major force for evolutionary change and holds great potential for delineating variation in primate behavior and morphology. The goals of this review are to highlight the rapidly rising field of sexual conflict and the ongoing shift in our understanding of interactions between the sexes. We discuss the evidence for sexual conflict within the Order Primates, and assess how studies of primates have illuminated and can continue to increase our understanding of sexual conflict and sexual selection. Finally, we introduce a framework for understanding the behavioral, anatomical, and genetic expression of sexual conflict across primate mating systems and suggest directions for future research.


Assuntos
Evolução Biológica , Conflito Psicológico , Primatas/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Masculino , Modelos Biológicos , Primatas/anatomia & histologia , Primatas/genética , Reprodução
18.
Proc Biol Sci ; 277(1678): 105-13, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19812079

RESUMO

Intersexual conflicts over mating can engender antagonistic coevolution of strategies, such as coercion by males and selective resistance by females. Orangutans are exceptional among mammals for their high levels of forced copulation. This has typically been viewed as an alternative mating tactic used by the competitively disadvantaged unflanged male morph, with little understanding of how female strategies may have shaped and responded to this behaviour. Here, we show that male morph is not by itself a good predictor of mating dynamics in wild Bornean orangutans but that female conception risk mediated the occurrence and quality of male-female interactions. Near ovulation, females mated cooperatively only with prime flanged males who they encountered at higher rates. When conception risk was low, willingness to associate and mate with non-prime males increased. Our results support the hypothesis that, together with concealed ovulation, facultative association is a mechanism of female choice in a species in which females can rarely avoid coercive mating attempts. Female resistance, which reduced copulation time, may provide an additional mechanism for mate selection. However, coercive factors were also important as prime males were frequently aggressive to females and females used mating strategies consistent with infanticide avoidance.


Assuntos
Comportamento de Escolha/fisiologia , Preferência de Acasalamento Animal/fisiologia , Pongo pygmaeus/fisiologia , Animais , Estradiol/urina , Feminino , Modelos Logísticos , Masculino , Pongo pygmaeus/psicologia , Progesterona/urina
19.
Am J Primatol ; 72(6): 467-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20095026

RESUMO

The bacterial population of the primate vaginal canal is an infant primate's first exposure to the microbial population inhabiting the outside world. Yet, little is known about this population and the effect it might have on the development and survival of the infant primate. As a first step toward characterizing the vaginal microbiota of a nonhuman primate, we used denaturing gradient gel electrophoresis to evaluate variations in the vaginal microbiota of a group of 35 baboons (Papio hamadryas), which were housed in a facility where they shared the same diet and the same environmental conditions. We found that, despite the uniform environment, there were appreciable differences in the composition of the microbiota from one individual to another. Our results also indicate that a simple swab test is sufficient for sampling the vaginal microbiota in the field, a finding that should help make more detailed characterization of the microbiota of wild primates feasible in the future.


Assuntos
Bactérias/classificação , DNA Bacteriano/análise , Papio hamadryas/microbiologia , Vagina/microbiologia , Animais , Bactérias/genética , Contagem de Colônia Microbiana , Feminino
20.
mSystems ; 5(3)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457237

RESUMO

Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component.IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA