Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Analyst ; 148(19): 4668-4676, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37646162

RESUMO

The extensive use of lanthanides in science, industry and high-technology products is accompanied by an anthropogenic input of rare earth elements into the environment. Knowledge of a metal's environmental fate is essential for reasonable risk assessment and remediation approaches. In the present study, Eu(III) was representatively used as a luminescent probe to study the chemical environment and to elucidate the molecular interactions of lanthanides with a suspension cell culture of Nicotiana tabacum BY-2. Biochemical methods were combined with luminescence spectroscopy, two-dimensional microspectroscopic mappings, and data deconvolution methods to resolve the bioassociation behavior and spatial distribution of Eu(III) in plant cells. BY-2 cells were found to gradually take up the metal after exposure to 100 µM Eu(III) without significant loss of viability. Time-resolved luminescence measurements were used to specify the occurrence of Eu(III) species as a function of time, revealing the transformation of an initial Eu(III) species into another after 24 h exposure. Chemical microscopy and subsequent iterative factor analysis reveal the presence of four distinct Eu(III) species located at different cellular compartments, e.g., the cell nucleus, nucleolus and cell walls, which could be assigned to intracellular binding motifs. In addition, a special type of bioaccumulation occurs through the formation of a Eu(III)-containing oxalate biomineral, which is already formed within the first 24 hours after metal exposure. Oxalate crystals were also obtained in analogous experiments with Gd and Sm. These results indicate that tobacco BY-2 cells induce the precipitation of metal oxalate biominerals for detoxification of lanthanides, although they also bind to other cellular ligands at the same time.


Assuntos
Elementos da Série dos Lantanídeos , Nicotiana , Técnicas de Cultura de Células , Nucléolo Celular , Oxalatos
2.
Inorg Chem ; 62(50): 20699-20709, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37702665

RESUMO

To pursue the design of in vivo stable chelating systems for radiometals, a concise and straightforward method toolbox was developed combining NMR, isothermal titration calorimetry (ITC), and europium time-resolved laser-induced fluorescence spectroscopy (Eu-TRLFS). For this purpose, the macropa chelator was chosen, and Lu3+, La3+, Pb2+, Ra2+, and Ba2+ were chosen as radiopharmaceutically relevant metal ions. They differ in charge (2+ and 3+) and coordination properties (main group vs lanthanides). 1H NMR was used to determine four pKa values (±0.15; carboxylate functions, 2.40 and 3.13; amino functions, 6.80 and 7.73). Eu-TRLFS was used to validate the exclusive existence of the 1:1 Mn+/ligand complex in the chosen pH range at tracer level concentrations. ITC measurements were accomplished to determine the resulting stability constants of the desired complexes, with log K values ranging from 18.5 for the Pb-mcp complex to 7.3 for the Lu-mcp complex. Density-functional-theory-calculated structures nicely mirror the complexes' order of stabilities by bonding features. Radiolabeling with macropa using ligand concentrations from 10-3 to 10-6 M was accomplished by pointing out the complex formation and stability (212Pb > 133La > 131Ba ≈ 224Ra > 177Lu) by means of normal-phase thin-layer chromatography analyses.


Assuntos
Elementos da Série dos Lantanídeos , Compostos Radiofarmacêuticos , Ligantes , Chumbo , Termodinâmica , Elementos da Série dos Lantanídeos/química , Quelantes/química , Európio/química
3.
Ecotoxicol Environ Saf ; 264: 115474, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716067

RESUMO

Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Resíduos Radioativos , Európio/química , Luminescência , Sulfatos , Argila
4.
Ecotoxicol Environ Saf ; 254: 114741, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950990

RESUMO

For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.


Assuntos
Brassica napus , Európio , Európio/química , Análise Espectral
5.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375436

RESUMO

The complex formation of Eu(III) and Cm(III) was studied via tetradentate, hexadentate, and octadentate coordinating ligands of the aminopolycarboxylate family, viz., nitrilotriacetate (NTA3-), ethylenediaminetetraacetate (EDTA4-), and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetate (EGTA4-), respectively. Based on the complexones' pKa values obtained from 1H nuclear magnetic resonance (NMR) spectroscopic pH titration, complex formation constants were determined by means of the parallel-factor-analysis-assisted evaluation of Eu(III) and Cm(III) time-resolved laser-induced fluorescence spectroscopy (TRLFS). This was complemented by isothermal titration calorimetry (ITC), providing the enthalpy and entropy of the complex formation. This allowed us to obtain genuine species along with their molecular structures and corresponding reliable thermodynamic data. The three investigated complexones formed 1:1 complexes with both Eu(III) and Cm(III). Besides the established Eu(III)-NTA 1:1 and 1:2 complexes, we observed, for the first time, the existence of a Eu(III)-NTA 2:2 complex of millimolar metal and ligand concentrations. Demonstrated for thermodynamic studies on Eu(III) and Cm(III) interaction with complexones, the utilized approach is commonly applicable to many other metal-ligand systems, even to high-affinity ligands.

6.
Chemistry ; 28(11): e202104301, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34957610

RESUMO

A new series of lanthanide (1-5) and uranyl (6) complexes with a tetra-substituted bifunctional calixarene ligand H2 L is described. The coordination environment for the Ln3+ and UO2 2+ ions is provided by phosphoryl and salicylamide functional groups appended to the lower rim of the p-tert-butylcalix[4]arene scaffold. Ligand interactions with lanthanide cations (light: La3+ , Pr3+ ; intermediate: Eu3+ and Gd3+ ; and heavy: Yb3+ ), as well as the uranyl cation (UO2 2+ ) is examined in the solution and solid state, respectively with spectrophotometric titration and single crystal X-ray diffractometry. The ligand is fully deprotonated in the complexation of trivalent lanthanide ions forming di-cationic complexes 2 : 2 M : L, [Ln2 (L)2 (H2 O)]2+ (1-5), in solution, whereas uranyl formed a 1 : 1 M : L complex [UO2 (L)(MeOH)]∞ (6) that demonstrated very limited solubility in 12 organic solvents. Solvent extraction behaviour is examined for cation selectivity and extraction efficiency. H2 L was found to be an effective extracting agent for UO2 2+ over La3+ and Yb3+ cations. The separation factors at pH 6.0 are: ßUO 2 2 + /La 3 + =121.0 and ßUO 2 2 + /Yb 3 + =70.0.

7.
Chemistry ; 28(21): e202200119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35179271

RESUMO

Reaction of the N-heterocylic carbene ligand i PrIm (L1 ) and lithium bis(trimethylsilyl)amide (TMSA) as a base with UCl4 resulted in U(IV) and U(V) complexes. Uranium's +V oxidation state in (HL1 )2 [U(V)(TMSI)Cl5 ] (TMSI=trimethylsilylimido) (2) was confirmed by HERFD-XANES measurements. Solid state characterization by SC-XRD and geometry optimisation of [U(IV)(L1 )2 (TMSA)Cl3 ] (1) indicated a silylamido ligand mediated inverse trans influence (ITI). The ITI was examined regarding different metal oxidation states and was compared to transition metal analogues by theoretical calculations.

8.
Inorg Chem ; 61(26): 10159-10166, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35748436

RESUMO

Technetium (Tc) is an environmentally relevant radioactive contaminant whose migration is limited when Tc(VII) is reduced to Tc(IV). However, its reaction mechanisms are not well understood yet. We have combined electrochemistry, spectroscopy, and microscopy (cyclic voltammetry, rotating disk electrode, X-ray photoelectron spectroscopy, and Raman and scanning electron microscopy) to study Tc(VII) reduction in non-complexing media: 0.5 mM KTcO4 in 2 M NaClO4 in the pH from 2.0 to 10.0. At pH 2.0, Tc(VII) first gains 2.3 ± 0.3 electrons, following Tc(V) rapidly receives 1.3 ± 0.3 electrons yielding Tc(IV). At pH 4.0-10.0, Tc(IV) is directly obtained by transfer of 3.2 ± 0.3 electrons. The reduction of Tc(VII) produced always a black solid identified as Tc(IV) by Raman and XPS. Our results narrow a significant gap in the fundamental knowledge of Tc aqueous chemistry and are important to understand Tc speciation. They provide basic steps on the way from non-complexing to complex media.

9.
J Synchrotron Radiat ; 28(Pt 1): 333-349, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399586

RESUMO

ROBL-II provides four different experimental stations to investigate actinide and other alpha- and beta-emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub-p.p.m. range. The XES station with its five bent-crystal analyzer, Johann-type setup with Rowland circles of 1.0 and 0.5 m radii provides high-energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six-circle heavy duty goniometer of XRD-1 is equipped for both high-resolution powder diffraction as well as surface-sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X-ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD-2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.

10.
Chemistry ; 27(72): 18058-18065, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34747538

RESUMO

We report a series of isostructural tetravalent actinide (Th, U-Pu) complexes with the N-donor ligand N,N'-ethylene-bis((pyrrole-2-yl)methanimine) (H2 L, H2 pyren). Structural data from SC-XRD analysis reveal [An(pyren)2 ] complexes with different An-Nimine versus An-Npyrrolide bond lengths. Quantum chemical calculations elucidated the bonding situation, including differences in the covalent character of the coordinative bonds. A comparison to the intensely studied analogous N,N'-ethylene-bis(salicylideneimine) (H2 salen)-based complexes [An(salen)2 ] displays, on average, almost equal electron sharing of pyren or salen with the AnIV , pointing to a potential ligand-cage-driven complex stabilisation. This is shown in the fixed ligand arrangement of pyren and salen in the respective AnIV complexes. The overall bond strength of the pure N-donor ligand pyren to AnIV (An=Th, U, Np, Pu) is slightly weaker than to salen, with the exception of the PaIV complex, which exhibits extraordinarily high electron sharing of pyren with PaIV . Such an altered ligand preference within the early AnIV series points to a specificity of the 5f1 configuration, which can be explained by polarisation effects of the 5 f electrons, allowing the strongest f electron backbonding from PaIV (5f1 ) to the N donors of pyren.

11.
Chemistry ; 27(72): 17975, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34914853

RESUMO

Invited for the cover of this issue is the group of Moritz Schmidt at the Helmholtz-Zentrum Dresden-Rossendorf. The image depicts the relative strength of bonds from an actinide to a pyrrole-based ligand in comparison with the salen ligand. Read the full text of the article at 10.1002/chem.202102849.

12.
Inorg Chem ; 60(4): 2514-2525, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534575

RESUMO

Key questions for the study of chemical bonding in actinide compounds are the degree of covalency that can be realized in the bonds to different donor atoms and the relative participation of 5f and 6d orbitals. A manifold of theoretical approaches is available to address these questions, but hitherto no comprehensive assessments are available. Here, we present an in-depth analysis of the metal-ligand bond in a series of actinide metal-organic compounds of the [M(salen)2] type (M = Ce, Th, Pa, U, Np, Pu) with the Schiff base N,N'-bis(salicylidene)ethylenediamine (salen). All compounds except the Pa complex (only included in the calculations) have been synthesized and characterized experimentally. The experimental data are then used as a basis to quantify the covalency of bonds to both N- and O-donor atoms using simple electron-density differences and the quantum theory of atoms in molecules (QTAIM) with interacting quantum atoms. In addition, the orbital origin of any covalent contributions was studied via natural population analysis (NPA). The results clearly show that the bond to the hard, charged O-donor atoms of salen is consistently not only stronger but also more covalent than bonds to the softer N-donor atoms. On the other hand, in a comparison of the metals, Th shows the most ionic bond character even compared to its 4f analogue Ce. A maximum of the covalency is found for Pa or Np by their absolute and relative covalent bond energies, respectively. This trend also correlates with a significant f- and d-orbital occupation for Pa and Np. These results underline that only a comprehensive computational approach is capable of fully characterizing the covalency in actinide complexes.

13.
Environ Sci Technol ; 55(23): 15797-15809, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813323

RESUMO

Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants' behavior in the bio- and geosphere. However, RTM of sorption reactions is constrained by the reactive surface site assessment. The reactive site density variability of the crystal surface nanotopography provides an "energetic landscape", responsible for heterogeneous sorption efficiency, not covered in current RTM approaches. Here, we study the spatially heterogeneous sorption behavior of Eu(III), as an analogue to trivalent actinides, on a polycrystalline nanotopographic calcite surface and quantify the sorption efficiency as a function of surface nanoroughness. Based on experimental data from micro-focus time-resolved laser-induced luminescence spectroscopy (µTRLFS), vertical scanning interferometry, and electron back-scattering diffraction (EBSD), we parameterize a surface complexation model (SCM) using surface nanotopography data. The validation of the quantitatively predicted spatial sorption heterogeneity suggests that retention reactions can be considerably influenced by nanotopographic surface features. Our study presents a way to implement heterogeneous surface reactivity into a SCM for enhanced prediction of radionuclide retention.


Assuntos
Elementos da Série Actinoide , Adsorção
14.
Environ Sci Technol ; 55(10): 6718-6728, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33929840

RESUMO

In this study, we investigated the interaction of U(VI) and Eu(III) with Brassica napus suspension plant cells as a model system. Concentration-dependent (0-200 µM) bioassociation experiments showed that more than 75% of U(VI) and Eu(III) were immobilized by the cells. In addition to this phenomenon, time-dependent studies for 1 to 72 h of exposure showed a multistage bioassociation process for cells that were exposed to 200 µM U(VI), where, after initial immobilization of U(VI) within 1 h of exposure, it was released back into the culture medium starting within 24 h. A remobilization to this extent has not been previously observed. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to correlate the bioassociation behavior of Eu and U with the cell vitality. Speciation studies by spectroscopy and in silico methods highlighted various U and Eu species over the course of exposure. We were able to observe a new U species, which emerged simultaneously with the remobilization of U back into the solution, which we assume to be a U(VI) phosphate species. Thus, the interaction of U(VI) and Eu(III) with released plant metabolites could be concluded.


Assuntos
Brassica napus , Urânio , Técnicas de Cultura de Células , Espectrometria de Fluorescência
15.
J Phys Chem A ; 125(20): 4380-4389, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33983019

RESUMO

A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X2·- and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.

16.
Ecotoxicol Environ Saf ; 211: 111883, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33454591

RESUMO

For the first time, the physiological and cellular responses of Nicotiana tabacum (BY-2) cells to uranium (U) as an abiotic stressor were studied using a multi-analytic approach that combined biochemical analysis, thermodynamic modeling and spectroscopic studies. The goal of this investigation was to determine the U threshold toxicity in tobacco BY-2 cells, the influence of U on the homeostasis of micro-macro essential nutrients, as well as the effect of Fe starvation on U bioassociation in cultured BY-2 cells. Our findings demonstrated that U interferes with the homeostasis of essential elements. The interaction of U with BY-2 cells confirmed both time- and concentration-dependent kinetics. Under Fe deficiency, a reduced level of U was detected in the cells compared to Fe-sufficient conditions. Interestingly, blocking the Ca channels with gadolinium chloride caused a decrease in U concentration in the BY-2 cells. Spectroscopic studies evidenced changes in the U speciation in the culture media with increasing exposure time under both Fe-sufficient and deficient conditions, leading us to conclude that different stress response reactions are related to Fe metabolism. Moreover, it is suggested that U toxicity in BY-2 cells is highly dependent on the existence of other micro-macro elements as shown by negative synergistic effects of U and Fe on cell viability.


Assuntos
Poluentes Ambientais/toxicidade , Urânio/toxicidade , Homeostase , Oxirredução , Estresse Fisiológico , Termodinâmica , Nicotiana/metabolismo , Testes de Toxicidade , Urânio/metabolismo
17.
Chemistry ; 26(70): 16853-16859, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32902881

RESUMO

The synthesis of three complex series of the form [AnCl2 (salen)(Pyx)2 ] (H2 salen=N,N'-bis(salicylidene)ethylenediamine; Pyx=pyridine, 4-methylpyridine, 3,5-dimethylpyridine) with tetravalent early actinides (An=Th, U, Np, Pu) is reported with the goal to elucidate the affinity of these heavy elements for small neutral N-donor molecules. Structure determination by single-crystal XRD and characterization of bulk powders with infrared spectroscopy reveals isostructurality within each respective series and the same complex conformation in all reported structures. Although the trend of interatomic distances for An-Cl and An-N (imine nitrogen of salen or pyridyl nitrogen of Pyx) was found to reflect an ionic behavior, the trend of the An-O distances can only be described with additional covalent interactions for all elements heavier than thorium. All experimental results are supported by quantum chemical calculations, which confirm the mostly ionic character in the An-N and An-Cl bonds, as well as the highest degree of covalency of the An-O bonds. Structurally, the calculations indicate just minor electronic or steric effects of the additional Pyx substituents on the complex properties.

18.
Chemistry ; 26(41): 8867-8870, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32347986

RESUMO

The synthesis of a tetravalent neptunium amidinate [NpCl((S)-PEBA)3 ] (1) ((S)-PEBA=(S,S)-N,N'-bis-(1-phenylethyl)-benzamidinate) is reported. This complex represents the first structurally characterized enantiopure transuranic compound. Reactivity studies with halide/pseudohalides yielding [NpX((S)-PEBA)3 ] (X=F (2), Br (3), N3 (4)) have shown that the chirality-at-metal is preserved for all compounds in the solid state. Furthermore, they represent an unprecedented example of a structurally characterized metal-organic Np complex featuring a Np-Br (3) bond. In addition, 4 is the only reported tetravalent transuranic azide. All compounds were additionally characterized in solution using para-magnetic NMR spectroscopy showing an expected C3 -symmetry at low temperatures.

19.
Inorg Chem ; 59(7): 4244-4254, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32148028

RESUMO

The interactions between glutathione disulfide, GSSG, the redox partner and dimer of the intracellular detoxification agent glutathione, GSH, and hexavalent uranium, U(VI), were extensively studied by solution NMR (in D2O), complemented by time-resolved laser-induced fluorescence and IR spectroscopies. As expected for the hard Lewis acid U(VI), coordination facilitates by the ligands' O-donor carboxyl groups. However, owing to the adjacent cationic α-amino group, the glutamyl-COO reveal monodentate binding, while the COO of the glycyl residues show bidentate coordination. The log K value for the reaction UO22+ + H3GSSG- → UO2(H3GSSG)+ (pH 3, 0.1 M NaClO4) was determined for the first time, being 4.81 ± 0.08; extrapolation to infinite dilution gave log K⊖ = 5.24 ± 0.08. U(VI) and GSSG form precipitates in the whole pD range studied (2-8), showing least solubility for 4 < pD < 6.5. Thus, particularly GSSG, hereby representing also other peptides and small proteins, affects the mobility of U(VI), strongly depending on the speciation of either component.

20.
Inorg Chem ; 59(21): 15670-15680, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33030346

RESUMO

Two series of isostructural tetravalent actinide amidinates [AnX((S)-PEBA)3] (An = Th, U, Np; X = Cl, N3) bearing the chiral (S,S)-N,N'-bis(1-phenylethyl)benzamidinate ((S)-PEBA) ligand have been synthesized and thoroughly characterized in solid and in solution. This study expands the already reported tetravalent neptunium complexes to the lighter actinides thorium and uranium. Furthermore, a rare Ce(IV) amidinate [CeCl((S)-PEBA)3] was synthesized to compare its properties to those of the analogous tetravalent actinide complexes. All compounds were characterized in the solid state using single-crystal XRD and infrared spectroscopy and in solution using NMR spectroscopy. Quantum chemical bonding analysis including also the isostructural Pa and Pu complexes was used to characterize the covalent contributions to any bond involving the metal cation. Th shows the least covalent character throughout the series, even substantially smaller than for the Ce complex. For U, Np, and Pu, similar covalent bonding contributions are found, but a natural population analysis reveals different origins. The 6d participation is the highest for U and decreases afterward, whereas the 5f participation increases continuously from Pa to Pu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA