Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(15): 3582-3604, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914985

RESUMO

While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.


Assuntos
Metano , Áreas Alagadas , Dióxido de Carbono , Ecossistema , Água Doce , Estações do Ano
2.
Glob Chang Biol ; 24(9): 4107-4121, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29575340

RESUMO

Wetlands are the largest source of methane (CH4 ) globally, yet our understanding of how process-level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2 ) and CH4 fluxes by eddy covariance from two wetlands recently restored on peat and alluvium soils within the Sacramento-San Joaquin Delta of California. Annual CH4 fluxes from the alluvium wetland were significantly lower than the peat site for multiple years following restoration, but these differences were not explained by variation in dominant climate drivers or productivity across wetlands. Soil iron (Fe) concentrations were significantly higher in alluvium soils, and alluvium CH4 fluxes were decoupled from plant processes compared with the peat site, as expected when Fe reduction inhibits CH4 production in the rhizosphere. Soil carbon content and CO2 uptake rates did not vary across wetlands and, thus, could also be ruled out as drivers of initial CH4 flux differences. Differences in wetland CH4 fluxes across soil types were transient; alluvium wetland fluxes were similar to peat wetland fluxes 3 years after restoration. Changing alluvium CH4 emissions with time could not be explained by an empirical model based on dominant CH4 flux biophysical drivers, suggesting that other factors, not measured by our eddy covariance towers, were responsible for these changes. Recently accreted alluvium soils were less acidic and contained more reduced Fe compared with the pre-restoration parent soils, suggesting that CH4 emissions increased as conditions became more favorable to methanogenesis within wetland sediments. This study suggests that alluvium soil properties, likely Fe content, are capable of inhibiting ecosystem-scale wetland CH4 flux, but these effects appear to be transient without continued input of alluvium to wetland sediments.


Assuntos
Dióxido de Carbono/análise , Sedimentos Geológicos/análise , Metano/análise , Solo/química , Áreas Alagadas , California , Carbono/análise , Conservação dos Recursos Naturais
3.
Glob Chang Biol ; 23(7): 2768-2782, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27888548

RESUMO

Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open-water diffusion and ebullition fluxes of CO2 , CH4 , and N2 O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy-covariance measurements of whole-ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open-water and vegetated cover types. Annual open-water CO2 , CH4 , and N2 O emissions were 915 ± 95 g C-CO2  m-2  yr-1 , 2.9 ± 0.5 g C-CH4  m-2  yr-1 , and 62 ± 17 mg N-N2 O m-2  yr-1 , respectively. Diffusion dominated open-water GHG transport, accounting for >99% of CO2 and N2 O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2 O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open-water fluxes (3.5 ± 0.3 kg CO2 -eq m-2  yr-1 ) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2 -eq m-2  yr-1 ) due to high ecosystem respiration. After scaling results to the entire wetland using object-based cover classification of remote sensing imagery, net uptake of CO2 (-1.4 ± 0.6 kt CO2 -eq yr-1 ) did not offset CH4 emission (3.7 ± 0.03 kt CO2 -eq yr-1 ), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2 -eq yr-1 . These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.


Assuntos
Efeito Estufa , Metano , Óxido Nitroso , Áreas Alagadas , Dióxido de Carbono , Ecossistema
4.
Glob Chang Biol ; 21(2): 750-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25229180

RESUMO

Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions.


Assuntos
Agricultura , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Conservação dos Recursos Naturais , Metano/análise , Solo/química , California , Ciclo do Carbono , Monitoramento Ambiental , Áreas Alagadas
5.
Glob Chang Biol ; 19(9): 2853-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23649775

RESUMO

Regional quantification of arctic CO2 and CH4 fluxes remains difficult due to high landscape heterogeneity coupled with a sparse measurement network. Most of the arctic coastal tundra near Barrow, Alaska is part of the thaw lake cycle, which includes current thaw lakes and a 5500-year chronosequence of vegetated thaw lake basins. However, spatial variability in carbon fluxes from these features remains grossly understudied. Here, we present an analysis of whole-ecosystem CO2 and CH4 fluxes from 20 thaw lake cycle features during the 2011 growing season. We found that the thaw lake cycle was largely responsible for spatial variation in CO2 flux, mostly due to its control on gross primary productivity (GPP). Current lakes were significant CO2 sources that varied little. Vegetated basins showed declining GPP and CO2 sink with age (R(2) = 67% and 57%, respectively). CH4 fluxes measured from a subset of 12 vegetated basins showed no relationship with age or CO2 flux components. Instead, higher CH4 fluxes were related to greater landscape wetness (R(2) = 57%) and thaw depth (additional R(2) = 28%). Spatial variation in CO2 and CH4 fluxes had good satellite remote sensing indicators, and we estimated the region to be a small CO2 sink of -4.9 ± 2.4 (SE) g C m(-2) between 11 June and 25 August, which was countered by a CH4 source of 2.1 ± 0.2 (SE) g C m(-2) . Results from our scaling exercise showed that developing or validating regional estimates based on single tower sites can result in significant bias, on average by a factor 4 for CO2 flux and 30% for CH4 flux. Although our results are specific to the Arctic Coastal Plain of Alaska, the degree of landscape-scale variability, large-scale controls on carbon exchange, and implications for regional estimation seen here likely have wide relevance to other arctic landscapes.


Assuntos
Dióxido de Carbono/química , Metano/química , Plantas/química , Água/química , Regiões Árticas , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA