Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycobiology ; 27(5): 486-500, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980000

RESUMO

Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)ß1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other ß-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal ß-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.


Assuntos
Agaricales/química , Lectinas Tipo C/química , Trissacarídeos/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/patogenicidade , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/genética , Polissacarídeos/metabolismo , Trissacarídeos/genética
2.
PLoS Pathog ; 8(5): e1002706, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615566

RESUMO

Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcß1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a ß-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.


Assuntos
Agaricales/imunologia , Agaricales/metabolismo , Carpóforos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans , Drosophila melanogaster , Carpóforos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Lectinas/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Trissacarídeos/metabolismo
3.
J Clin Microbiol ; 49(2): 638-46, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147952

RESUMO

Staphylococcus aureus encodes many proteins that act as virulence factors, leading to a variety of diseases, including mastitis in cows. Among these virulence factors, SpA, ClfA, ClfB, FnbA, and FnbB are important for the ability of S. aureus to adhere to and invade host cells as well as to evade host immune responses. The interaction between these S. aureus surface proteins and human immunoglobulin G and fibrinogen that are coupled to latex particles is utilized to induce latex agglutination reactions, which are used widely in diagnostic kits for confirmation of presumptive S. aureus isolates. In this study, the Staphaurex latex agglutination test was performed on a collection of confirmed bovine mastitis S. aureus isolates. Notably, 54% (43/79 isolates) of these isolates exhibited latex agglutination-negative phenotypes (Staphaurex-negative result). To gain insights into the reasons for the high frequency of Staphaurex-negative bovine mastitis S. aureus isolates, the spa, clfA, clfB, fnbA, and fnbB genes were examined. Specific genetic changes in spa, clfA, and fnbA, as well as a loss of fnbB, which may impair SpA, ClfA, FnbA, and FnbB functions in latex agglutination reactions, were detected in Staphaurex-negative S. aureus isolates. The genetic changes included a premature stop codon in the spa gene, leading to a truncated SpA protein that is unable to participate in S. aureus cell-mediated agglutination of latex particles. In addition, clfA and fnbA genetic polymorphisms were detected that were linked to ClfA and FnbA amino acid changes that may significantly reduce fibrinogen-binding activity. The genetic variations in these S. aureus isolates might also have implications for their bovine mastitis virulence capacity.


Assuntos
Técnicas Bacteriológicas/métodos , Reações Falso-Negativas , Variação Genética , Mastite Bovina/diagnóstico , Staphylococcus aureus/isolamento & purificação , Fatores de Virulência/genética , Animais , Bovinos , Coagulase/genética , Coagulase/imunologia , Códon sem Sentido , Feminino , Testes de Fixação do Látex/métodos , Mastite Bovina/microbiologia , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação de Sentido Incorreto , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/genética , Fatores de Virulência/imunologia
4.
PLoS One ; 10(6): e0129381, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26057124

RESUMO

Lectins are non-immunoglobulin carbohydrate-binding proteins without enzymatic activity towards the bound carbohydrates. Many lectins of e.g. plants or fungi have been suggested to act as toxins to defend the host against predators and parasites. We have previously shown that the Coprinopsis cinerea lectin 2 (CCL2), which binds to α1,3-fucosylated N-glycan cores, is toxic to Caenorhabditis elegans and results in developmental delay and premature death. In this study, we investigated the underlying toxicity phenotype at the cellular level by electron and confocal microscopy. We found that CCL2 directly binds to the intestinal apical surface and leads to a highly damaged brush border with loss of microvilli, actin filament depolymerization, and invaginations of the intestinal apical plasma membrane through gaps in the terminal web. We excluded several possible toxicity mechanisms such as internalization and pore-formation, suggesting that CCL2 acts directly on intestinal apical plasma membrane or glycocalyx proteins. A genetic screen for C. elegans mutants resistant to CCL2 generated over a dozen new alleles in bre 1, ger 1, and fut 1, three genes required for the synthesis of the sugar moiety recognized by CCL2. CCL2-induced intestinal brush border defects in C. elegans are similar to the damage observed previously in rats after feeding the dietary lectins wheat germ agglutinin or concanavalin A. The evolutionary conserved reaction of the brush border between mammals and nematodes might allow C. elegans to be exploited as model organism for the study of dietary lectin-induced intestinal pathology in mammals.


Assuntos
Caenorhabditis elegans/metabolismo , Quimiocina CCL2/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Mucosa Intestinal/metabolismo , Lectinas/metabolismo , Alelos , Animais , Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Dieta/métodos , Testes Genéticos/métodos , Glicocálix/genética , Glicocálix/metabolismo , Intestinos/microbiologia , Mamíferos/metabolismo , Mamíferos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA