Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant Physiol ; 189(4): 2001-2014, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522031

RESUMO

Castor bean (Ricinus communis) seed oil (triacylglycerol [TAG]) is composed of ∼90% of the industrially important ricinoleoyl (12-hydroxy-9-octadecenoyl) groups. Here, phosphatidylcholine (PC):diacylglycerol (DAG) cholinephosphotransferase (PDCT) from castor bean was biochemically characterized and compared with camelina (Camelina sativa) PDCT. DAGs with ricinoleoyl groups were poorly used by Camelina PDCT, and their presence inhibited the utilization of DAG with "common" acyl groups. In contrast, castor PDCT utilized DAG with ricinoleoyl groups similarly to DAG with common acyl groups and showed a 10-fold selectivity for DAG with one ricinoleoyl group over DAG with two ricinoleoyl groups. Castor DAG acyltransferase2 specificities and selectivities toward different DAG and acyl-CoA species were assessed and shown to not acylate DAG without ricinoleoyl groups in the presence of ricinoleoyl-containing DAG. Eighty-five percent of the DAG species in microsomal membranes prepared from developing castor endosperm lacked ricinoleoyl groups. Most of these species were predicted to be derived from PC, which had been formed by PDCT in exchange with DAG with one ricinoleoyl group. A scheme of the function of PDCT in castor endosperm is proposed where one ricinoleoyl group from de novo-synthesized DAG is selectivity transferred to PC. Nonricinoleate DAG is formed and ricinoleoyl groups entering PC are re-used either in de novo synthesis of DAG with two ricinoleoyl groups or in direct synthesis of triricinoleoyl TAG by PDAT. The PC-derived DAG is not used in TAG synthesis but is proposed to serve as a substrate in membrane lipid biosynthesis during oil deposition.


Assuntos
Brassicaceae , Ricinus communis , Óleo de Rícino , Diacilglicerol Colinofosfotransferase , Diglicerídeos , Fosfatidilcolinas , Ricinus/genética , Sementes , Triglicerídeos
2.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809440

RESUMO

Arabidopsis thaliana possesses two acyl-CoA:lysophosphatidylethanolamine acyltransferases, LPEAT1 and LPEAT2, which are encoded by At1g80950 and At2g45670 genes, respectively. Both single lpeat2 mutant and double lpeat1 lpeat2 mutant plants exhibit a variety of conspicuous phenotypes, including dwarfed growth. Confocal microscopic analysis of tobacco suspension-cultured cells transiently transformed with green fluorescent protein-tagged versions of LPEAT1 or LPEAT2 revealed that LPEAT1 is localized to the endoplasmic reticulum (ER), whereas LPEAT2 is localized to both Golgi and late endosomes. Considering that the primary product of the reaction catalyzed by LPEATs is phosphatidylethanolamine, which is known to be covalently conjugated with autophagy-related protein ATG8 during a key step of the formation of autophagosomes, we investigated the requirements for LPEATs to engage in autophagic activity in Arabidopsis. Knocking out of either or both LPEAT genes led to enhanced accumulation of the autophagic adaptor protein NBR1 and decreased levels of both ATG8a mRNA and total ATG8 protein. Moreover, we detected significantly fewer membrane objects in the vacuoles of lpeat1 lpeat2 double mutant mesophyll cells than in vacuoles of control plants. However, contrary to what has been reported on autophagy deficient plants, the lpeat mutants displayed a prolonged life span compared to wild type, including delayed senescence.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Autofagia/genética , Biomarcadores/metabolismo , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Autofagossomos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Células do Mesofilo/metabolismo , Células do Mesofilo/ultraestrutura , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
3.
Plant Physiol ; 181(4): 1468-1479, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619508

RESUMO

In most oilseeds, two evolutionarily unrelated acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, are the main contributors to the acylation of diacylglycerols in the synthesis of triacylglycerol. DGAT1 and DGAT2 are both present in the important crop oilseed rape (Brassica napus), with each type having four isoforms. We studied the activities of DGAT isoforms during seed development in microsomal fractions from two oilseed rape cultivars: edible, low-erucic acid (22:1) MONOLIT and nonedible high-erucic acid MAPLUS. Whereas the specific activities of DGATs were similar with most of the tested acyl-CoA substrates in both cultivars, MAPLUS had 6- to 14-fold higher activity with 22:1-CoA than did MONOLIT. Thus, DGAT isoforms with different acyl-CoA specificities are differentially active in the two cultivars. We characterized the acyl-CoA specificities of all DGAT isoforms in oilseed rape in the microsomal fractions of yeast cells heterologously expressing these enzymes. All four DGAT1 isoforms showed similar and broad acyl-CoA specificities. However, DGAT2 isoforms had much narrower acyl-CoA specificities: two DGAT2 isoforms were highly active with 22:1-CoA, while the ability of the other two isoforms to use this substrate was impaired. These findings elucidate the importance, which a DGAT isoform with suitable acyl-CoA specificity may have, when aiming for high content of a particular fatty acid in plant triacylglycerol reservoirs.


Assuntos
Acil Coenzima A/metabolismo , Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Erúcicos/metabolismo , Proteínas de Plantas/metabolismo , Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Microssomos/enzimologia , Filogenia , Proteínas de Plantas/genética , Sementes/embriologia , Especificidade por Substrato/genética , Triglicerídeos
4.
Plant J ; 96(6): 1299-1308, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242919

RESUMO

Over 450 structurally distinct fatty acids are synthesized by plants. We have developed PlantFAdb.org, an internet-based database that allows users to search and display fatty acid composition data for over 9000 plants. PlantFAdb includes more than 17 000 data tables from >3000 publications and hundreds of unpublished analyses. This unique feature allows users to easily explore chemotaxonomic relationships between fatty acid structures and plant species by displaying these relationships on dynamic phylogenetic trees. Users can navigate between order, family, genus and species by clicking on nodes in the tree. The weight percentage of a selected fatty acid is indicated on phylogenetic trees and clicking in the graph leads to underlying data tables and publications. The display of chemotaxonomy allows users to quickly explore the diversity of plant species that produce each fatty acid and that can provide insights into the evolution of biosynthetic pathways. Fatty acid compositions and other parameters from each plant species have also been compiled from multiple publications on a single page in graphical form. Links provide simple and intuitive navigation between fatty acid structures, plant species, data tables and the publications that underlie the datasets. In addition to providing an introduction to this resource, this report illustrates examples of insights that can be derived from PlantFAdb. Based on the number of plant families and orders that have not yet been surveyed we estimate that a large number of novel fatty acid structures are still to be discovered in plants.


Assuntos
Bases de Dados de Compostos Químicos , Ácidos Graxos/química , Plantas/metabolismo , Ácidos Graxos/metabolismo , Estrutura Molecular , Filogenia , Plantas/genética
5.
Planta ; 249(5): 1285-1299, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30610363

RESUMO

MAIN CONCLUSION: In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.


Assuntos
Aciltransferases/metabolismo , Euphorbiaceae/enzimologia , Euphorbiaceae/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Ricinoleicos/metabolismo
6.
Plant Physiol ; 173(4): 2081-2095, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235891

RESUMO

Acyltransferases are key contributors to triacylglycerol (TAG) synthesis and, thus, are of great importance for seed oil quality. The effects of increased or decreased expression of ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) on seed lipid composition were assessed in several Camelina sativa lines. Furthermore, in vitro assays of acyltransferases in microsomal fractions prepared from developing seeds of some of these lines were performed. Decreased expression of DGAT1 led to an increased percentage of 18:3n-3 without any change in total lipid content of the seed. The tri-18:3 TAG increase occurred predominantly in the cotyledon, as determined with matrix-assisted laser desorption/ionization-mass spectrometry, whereas species with two 18:3n-3 acyl groups were elevated in both cotyledon and embryonal axis. PDAT overexpression led to a relative increase of 18:2n-6 at the expense of 18:3n-3, also without affecting the total lipid content. Differential distributions of TAG species also were observed in different parts of the seed. The microsomal assays revealed that C.sativa seeds have very high activity of diacylglycerol-phosphatidylcholine interconversion. The combination of analytical and biochemical data suggests that the higher 18:2n-6 content in the seed oil of the PDAT overexpressors is due to the channeling of fatty acids from phosphatidylcholine into TAG before being desaturated to 18:3n-3, caused by the high activity of PDAT in general and by PDAT specificity for 18:2n-6. The higher levels of 18:3n-3 in DGAT1-silencing lines are likely due to the compensatory activity of a TAG-synthesizing enzyme with specificity for this acyl group and more desaturation of acyl groups occurring on phosphatidylcholine.


Assuntos
Aciltransferases/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Ácido alfa-Linolênico/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/genética , Brassicaceae/enzimologia , Brassicaceae/genética , Brassicaceae/metabolismo , Cotilédone/enzimologia , Cotilédone/genética , Cotilédone/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Lipídeos/análise , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/enzimologia , Sementes/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/análise , Triglicerídeos/biossíntese , Ácido alfa-Linolênico/análise
7.
Plant Physiol ; 174(2): 986-998, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28408542

RESUMO

Arabidopsis (Arabidopsis thaliana) contains two enzymes (encoded by the At1g80950 and At2g45670 genes) preferentially acylating lysophosphatidylethanolamine (LPE) with acyl-coenzyme A (CoA), designated LYSOPHOSPHATIDYLETHANOLAMINE ACYLTRANSFERASE1 (LPEAT1) and LPEAT2. The transfer DNA insertion mutant lpeat2 and the double mutant lpeat1 lpeat2 showed impaired growth, smaller leaves, shorter roots, less seed setting, and reduced lipid content per fresh weight in roots and seeds and large increases in LPE and lysophosphatidylcholine (LPC) contents in leaves. Microsomal preparations from leaves of these mutants showed around 70% decrease in acylation activity of LPE with 16:0-CoA compared with wild-type membranes, whereas the acylation with 18:1-CoA was much less affected, demonstrating that other lysophospholipid acyltransferases than the two LPEATs could acylate LPE The above-mentioned effects were less pronounced in the single lpeat1 mutant. Overexpression of either LPEAT1 or LPEAT2 under the control of the 35S promotor led to morphological changes opposite to what was seen in the transfer DNA mutants. Acyl specificity studies showed that LPEAT1 utilized 16:0-CoA at the highest rate of 11 tested acyl-CoAs, whereas LPEAT2 utilized 20:0-CoA as the best acyl donor. Both LPEATs could acylate either sn position of ether analogs of LPC The data show that the activities of LPEAT1 and LPEAT2 are, in a complementary way, involved in growth regulation in Arabidopsis. It is shown that LPEAT activity (especially LPEAT2) is essential for maintaining adequate levels of phosphatidylethanolamine, LPE, and LPC in the cells.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Aciltransferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Mutação/genética , Fenótipo , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas , Especificidade por Substrato
8.
J Exp Bot ; 69(6): 1415-1432, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29365132

RESUMO

Autophagy is a major catabolic process whereby autophagosomes deliver cytoplasmic content to the lytic compartment for recycling. Autophagosome formation requires two ubiquitin-like systems conjugating Atg12 with Atg5, and Atg8 with lipid phosphatidylethanolamine (PE), respectively. Genetic suppression of these systems causes autophagy-deficient phenotypes with reduced fitness and longevity. We show that Atg5 and the E1-like enzyme, Atg7, are rate-limiting components of Atg8-PE conjugation in Arabidopsis. Overexpression of ATG5 or ATG7 stimulates Atg8 lipidation, autophagosome formation, and autophagic flux. It also induces transcriptional changes opposite to those observed in atg5 and atg7 mutants, favoring stress resistance and growth. As a result, ATG5- or ATG7-overexpressing plants exhibit increased resistance to necrotrophic pathogens and oxidative stress, delayed aging and enhanced growth, seed set, and seed oil content. This work provides an experimental paradigm and mechanistic insight into genetic stimulation of autophagy in planta and shows its efficiency for improving plant productivity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Autofagia/genética , Aptidão Genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Transdução de Sinais/genética
9.
J Biol Chem ; 291(48): 25066-25076, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27758859

RESUMO

Glycero-3-phosphocholine (GPC), the product of the complete deacylation of phosphatidylcholine (PC), was long thought to not be a substrate for reacylation. However, it was recently shown that cell-free extracts from yeast and plants could acylate GPC with acyl groups from acyl-CoA. By screening enzyme activities of extracts derived from a yeast knock-out collection, we were able to identify and clone the yeast gene (GPC1) encoding the enzyme, named glycerophosphocholine acyltransferase (GPCAT). By homology search, we also identified and cloned GPCAT genes from three plant species. All enzymes utilize acyl-CoA to acylate GPC, forming lyso-PC, and they show broad acyl specificities in both yeast and plants. In addition to acyl-CoA, GPCAT efficiently utilizes LPC and lysophosphatidylethanolamine as acyl donors in the acylation of GPC. GPCAT homologues were found in the major eukaryotic organism groups but not in prokaryotes or chordates. The enzyme forms its own protein family and does not contain any of the acyl binding or lipase motifs that are present in other studied acyltransferases and transacylases. In vivo labeling studies confirm a role for Gpc1p in PC biosynthesis in yeast. It is postulated that GPCATs contribute to the maintenance of PC homeostasis and also have specific functions in acyl editing of PC (e.g. in transferring acyl groups modified at the sn-2 position of PC to the sn-1 position of this molecule in plant cells).


Assuntos
Aciltransferases/metabolismo , Fosfatidilcolinas/biossíntese , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acilação , Aciltransferases/genética , Fosfatidilcolinas/genética , Proteínas de Plantas/genética , Plantas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 289(32): 21984-94, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24917677

RESUMO

The biosynthesis of ether lipids and wax esters requires as precursors fatty alcohols, which are synthesized by fatty acyl reductases (FARs). The presence of ether glycerolipids as well as branched wax esters has been reported in several free-living ciliate protozoa. In the genome of Tetrahymena thermophila, the only ORF sharing similarities with FARs is fused to an acyltransferase-like domain, whereas, in most other organisms, FARs are monofunctional proteins of similar size and domain structure. Here, we used heterologous expression in plant and yeast to functionally characterize the activities catalyzed by this protozoan protein. Transient expression in tobacco epidermis of a truncated form fused to the green fluorescence protein followed by confocal microscopy analysis suggested peroxisomal localization. In vivo approaches conducted in yeast indicated that the N-terminal FAR-like domain produced both 16:0 and 18:0 fatty alcohols, whereas the C-terminal acyltransferase-like domain was able to rescue the lethal phenotype of the yeast double mutant gat1Δ gat2Δ. Using in vitro approaches, we further demonstrated that this domain is a dihydroxyacetone phosphate acyltransferase that uses preferentially 16:0-coenzyme A as an acyl donor. Finally, coexpression in yeast with the alkyl-dihydroxyacetone phosphate synthase from T. thermophila resulted the detection of various glycerolipids with an ether bond, indicating reconstitution of the ether lipid biosynthetic pathway. Together, these results demonstrate that this FAR-like protein is peroxisomal and bifunctional, providing both substrates required by alkyl-dihydroxyacetone phosphate synthase to initiate ether lipid biosynthesis.


Assuntos
Aciltransferases/metabolismo , Aldeído Oxirredutases/metabolismo , Lipídeos/biossíntese , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Éteres/metabolismo , Fusão Gênica , Genes de Protozoários , Teste de Complementação Genética , Palmitoil Coenzima A/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Tetrahymena thermophila/genética , Nicotiana/genética , Nicotiana/metabolismo
11.
Planta ; 241(2): 347-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25298156

RESUMO

MAIN CONCLUSION: Plants have lysophosphatidylcholine transacylase (LPCT) and acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activities. The combined action of LPCT and GPCAT provides a novel route of PC re-synthesis after its deacylation. Phosphatidylcholine (PC) is the major lipid in eukaryotic membranes and has a central role in overall plant lipid metabolism. It is also the site of production of polyunsaturated fatty acids in plants. The recently discovered acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activity in yeast provides a novel route of re-synthesising PC via lysophosphatidylcholine (LPC) after its deacylation. This route does not require the degradation of the glycerophosphocholine (GPC) into free choline, the activation of choline to CDP-choline, nor the utilization of CDP-choline by the CDP-choline:diacylglycerol cholinephosphotransferase. We show here that GPCAT activities also are present in membrane preparations from developing oil seeds of safflower and other species as well as in membrane preparations of roots and leaves of Arabidopsis, indicating that GPCAT activity plays a ubiquitous role in plant lipid metabolism. The last step in formation of GPC, the substrate for GPCAT, is the deacylation of LPC. Microsomal membranes of developing safflower seeds utilized LPC in LPC:LPC transacylation reactions (LPCT activities) creating PC and GPC. The results demonstrate that safflower membranes have LPCT and GPCAT activities that represent novel reactions for PC acyl editing. The physiological relevance of these reactions probably has to await identification of the enzymes catalysing these reactions.


Assuntos
Aciltransferases/metabolismo , Lisofosfatidilcolinas/metabolismo , Proteínas de Plantas/metabolismo
12.
Plant Cell ; 24(11): 4652-69, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23150634

RESUMO

It has been widely accepted that the primary function of the Lands cycle is to provide a route for acyl remodeling to modify fatty acid (FA) composition of phospholipids derived from the Kennedy pathway. Lysophosphatidylcholine acyltransferase (LPCAT) is an evolutionarily conserved key enzyme in the Lands cycle. In this study, we provide direct evidence that the Arabidopsis thaliana LPCATs, LPCAT1 and LPCAT2, participate in the Lands cycle in developing seeds. In spite of a substantially reduced initial rate of nascent FA incorporation into phosphatidylcholine (PC), the PC level in the double mutant lpcat1 lpcat2-2 remained unchanged. LPCAT deficiency triggered a compensatory response of de novo PC synthesis and a concomitant acceleration of PC turnover that were attributable at least in part to PC deacylation. Acyl-CoA profile analysis revealed complicated metabolic alterations rather than merely reduced acyl group shuffling from PC in the mutant. Shifts in FA stereo-specific distribution in triacylglycerol of the mutant seed suggested a preferential retention of saturated acyl chains at the stereospecific numbering (sn)-1 position from PC and likely a channeling of lysophosphatidic acid, derived from PC, into the Kennedy pathway. Our study thus illustrates an intricate relationship between the Lands cycle and the Kennedy pathway.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Fosfatidilcolinas/metabolismo , Sementes/enzimologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Acil Coenzima A/metabolismo , Acilação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Glicolipídeos/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Triglicerídeos/metabolismo
13.
Plant Cell ; 24(5): 2001-14, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22623494

RESUMO

During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Ésteres/química , Ácidos Graxos/química , Dados de Sequência Molecular , Filogenia
14.
J Biol Chem ; 288(52): 36902-14, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24189065

RESUMO

Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4-6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Catálise , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/genética , Dados de Sequência Molecular , Especificidade da Espécie
15.
Plant Biotechnol J ; 12(2): 193-203, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24119222

RESUMO

Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed.


Assuntos
Crambe (Planta)/genética , Ácidos Erúcicos/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Acilação , Brassica/genética , Brassica/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Radioisótopos de Carbono/análise , Clorofila/metabolismo , Crambe (Planta)/crescimento & desenvolvimento , Crambe (Planta)/metabolismo , Ácidos Graxos/metabolismo , Engenharia Genética , Glicerol/análise , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Tempo
16.
Metab Eng ; 25: 103-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038447

RESUMO

In a future bio-based economy, renewable sources for lipid compounds at attractive cost are needed for applications where today petrochemical derivatives are dominating. Wax esters and fatty alcohols provide diverse industrial uses, such as in lubricant and surfactant production. In this study, chloroplast metabolism was engineered to divert intermediates from de novo fatty acid biosynthesis to wax ester synthesis. To accomplish this, chloroplast targeted fatty acyl reductases (FAR) and wax ester synthases (WS) were transiently expressed in Nicotiana benthamiana leaves. Wax esters of different qualities and quantities were produced providing insights to the properties and interaction of the individual enzymes used. In particular, a phytyl ester synthase was found to be a premium candidate for medium chain wax ester synthesis. Catalytic activities of FAR and WS were also expressed as a fusion protein and determined functionally equivalent to the expression of individual enzymes for wax ester synthesis in chloroplasts.


Assuntos
Aldeído Oxirredutases/metabolismo , Cloroplastos/fisiologia , Engenharia Metabólica/métodos , Nicotiana/fisiologia , Folhas de Planta/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Ceras/metabolismo , Aldeído Oxirredutases/genética , Ésteres , Plantas Geneticamente Modificadas/fisiologia , ATPases Translocadoras de Prótons/genética
17.
Planta ; 237(6): 1627-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539042

RESUMO

The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.


Assuntos
Aciltransferases/metabolismo , Carthamus tinctorius/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Helianthus/enzimologia , Microssomos/enzimologia , Sementes/enzimologia , Carthamus tinctorius/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Helianthus/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Modelos Biológicos , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Triglicerídeos/metabolismo
18.
Plant Biotechnol J ; 11(2): 197-210, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23190163

RESUMO

Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.


Assuntos
Ração Animal , Engenharia Metabólica , Óleos de Plantas/metabolismo , Ceras/metabolismo , Ácidos Graxos/biossíntese , Plantas/metabolismo
19.
J Lipid Res ; 53(10): 2153-2161, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22878160

RESUMO

Wax esters are neutral lipids exhibiting desirable properties for lubrication. Natural sources have traditionally been whales. Additionally some plants produce wax esters in their seed oil. Currently there is no biological source available for long chain length monounsaturated wax esters that are most suited for industrial applications. This study aimed to identify enzymatic requirements enabling their production in oilseed plants. Wax esters are generated by the action of fatty acyl-CoA reductase (FAR), generating fatty alcohols and wax synthases (WS) that esterify fatty alcohols and acyl-CoAs to wax esters. Based on their substrate preference, a FAR and a WS from Mus musculus were selected for this study (MmFAR1 and MmWS). MmWS resides in the endoplasmic reticulum (ER), whereas MmFAR1 associates with peroxisomes. The elimination of a targeting signal and the fusion to an oil body protein yielded variants of MmFAR1 and MmWS that were cotargeted and enabled wax ester production when coexpressed in yeast or Arabidopsis. In the fae1 fad2 double mutant, rich in oleate, the cotargeted variants of MmFAR1 and MmWS enabled formation of wax esters containing >65% oleyl-oleate. The data suggest that cotargeting of unusual biosynthetic enzymes can result in functional interplay of heterologous partners in transgenic plants.


Assuntos
Aciltransferases/metabolismo , Aldeído Oxirredutases/metabolismo , Óleos de Plantas/metabolismo , Ceras/química , Aciltransferases/genética , Aldeído Oxirredutases/genética , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Ésteres/química , Ésteres/metabolismo , Camundongos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Especificidade por Substrato , Ceras/metabolismo
20.
Plant J ; 67(6): 1018-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21615570

RESUMO

To identify the underlying molecular basis of carbon partitioning between starch and oil we conducted 454 pyrosequencing, followed by custom microarrays to profile gene expression throughout endosperm development, of two closely related oat cultivars that differ in oil content at the expense of starch as determined by several approaches including non-invasive magnetic resonance imaging. Comparative transcriptome analysis in conjunction with metabolic profiling displays a close coordination between energy metabolism and carbon partitioning pathways, with increased demands for energy and reducing equivalents in kernels with a higher oil content. These studies further expand the repertoire of networks regulating carbon partitioning to those involved in metabolism of cofactors, suggesting that an elevated supply of cofactors, here called cofactomes, contribute to the allocation of higher carbon pools for production of oils and storage proteins. These data highlight a close association between cofactomes and carbon partitioning, thereby providing a biotechnological target for conversion of starch to oil.


Assuntos
Avena/genética , Avena/metabolismo , Biocombustíveis , Carbono/metabolismo , Coenzimas/metabolismo , Óleos de Plantas/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Análise de Sequência com Séries de Oligonucleotídeos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA