Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(5): 1015-30, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26898331

RESUMO

TGF-ß signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-ß mediator Smad4. We show that TGF-ß induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-ß-sensitive PDA cells, EMT becomes lethal by converting TGF-ß-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-ß. TGF-ß-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-ß tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.


Assuntos
Carcinoma Ductal/genética , Transição Epitelial-Mesenquimal , Redes Reguladoras de Genes , Neoplasias Pancreáticas/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose , Carcinoma Ductal/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Organoides/metabolismo , Organoides/patologia , Neoplasias Pancreáticas/patologia , Fatores de Transcrição SOXC/metabolismo , Proteína Smad4/metabolismo
2.
Cell ; 161(2): 240-54, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860607

RESUMO

In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.


Assuntos
Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Li-Fraumeni/complicações , Osteossarcoma/etiologia , Adolescente , Adulto , Animais , Criança , Decorina/metabolismo , Feminino , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(27): e2312337121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923987

RESUMO

Sodium-ion batteries (SIBs) as one of the promising alternatives to lithium-ion batteries have achieved remarkable progress in the past. However, the all-climate performance is still very challenging for SIBs. Herein, 15-Crown-5 (15-C-5) is screened as an electrolyte additive from a number of ether molecules theoretically. The good sodiophilicity, high molecule rigidity, and bulky size enable it to reshape the solvation sheath and promote the anion engagement in the solvated structures by molecule crowding. This change also enhances Na-ion transfer, inhibits side reactions, and leads to a thin and robust solid-electrolyte interphase. Furthermore, the electrochemical stability and operating temperature windows of the electrolyte are extended. These profits improve the electrochemical performance of SIBs in all climates, much better than the case without 15-C-5. This improvement is also adopted to µ-Sn, µ-Bi, hard carbon, and MoS2. This work opens a door to prioritize the potential molecules in theory for advanced electrolytes.

4.
Genes Dev ; 33(21-22): 1506-1524, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582430

RESUMO

TGF-ß receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-ß signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-ß signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-ß signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Modelos Moleculares , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta/metabolismo , Animais , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo
5.
Cell ; 145(2): 183-97, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21477851

RESUMO

The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Proteínas/metabolismo , Animais , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência de DNA , Ativação Transcricional
7.
Nature ; 578(7793): E11, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31937917

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nature ; 577(7791): 566-571, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915377

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) are phenotypic plasticity processes that confer migratory and invasive properties to epithelial cells during development, wound-healing, fibrosis and cancer1-4. EMTs are driven by SNAIL, ZEB and TWIST transcription factors5,6 together with microRNAs that balance this regulatory network7,8. Transforming growth factor ß (TGF-ß) is a potent inducer of developmental and fibrogenic EMTs4,9,10. Aberrant TGF-ß signalling and EMT are implicated in the pathogenesis of renal fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, pulmonary fibrosis and cancer4,11. TGF-ß depends on RAS and mitogen-activated protein kinase (MAPK) pathway inputs for the induction of EMTs12-19. Here we show how these signals coordinately trigger EMTs and integrate them with broader pathophysiological processes. We identify RAS-responsive element binding protein 1 (RREB1), a RAS transcriptional effector20,21, as a key partner of TGF-ß-activated SMAD transcription factors in EMT. MAPK-activated RREB1 recruits TGF-ß-activated SMAD factors to SNAIL. Context-dependent chromatin accessibility dictates the ability of RREB1 and SMAD to activate additional genes that determine the nature of the resulting EMT. In carcinoma cells, TGF-ß-SMAD and RREB1 directly drive expression of SNAIL and fibrogenic factors stimulating myofibroblasts, promoting intratumoral fibrosis and supporting tumour growth. In mouse epiblast progenitors, Nodal-SMAD and RREB1 combine to induce expression of SNAIL and mesendoderm-differentiation genes that drive gastrulation. Thus, RREB1 provides a molecular link between RAS and TGF-ß pathways for coordinated induction of developmental and fibrogenic EMTs. These insights increase our understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fibrose/patologia , Gastrulação , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Organoides/metabolismo , Organoides/patologia , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(16): e2117857119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412907

RESUMO

The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC­derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a­regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.


Assuntos
Neoplasias Ósseas , Carcinogênese , Fator de Transcrição E2F3 , Regulação Neoplásica da Expressão Gênica , Células-Tronco Pluripotentes Induzidas , Osteossarcoma , Proteínas de Ligação a Retinoblastoma , Spliceossomos , Ubiquitina-Proteína Ligases , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Carcinogênese/genética , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Genes do Retinoblastoma , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Osteossarcoma/genética , Osteossarcoma/patologia , Neoplasias da Retina/genética , Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843402

RESUMO

High-entropy alloys (HEAs) have garnered considerable attention as promising nanocatalysts for effectively utilizing Pt in catalysis toward oxygen reduction reactions due to their unique properties. Nonetheless, there is a relative dearth of attention regarding the structural evolution of HEAs in response to electrochemical conditions. In this work, we propose a thermal reduction method to synthesize high entropy nanoparticles by leveraging the confinement effect and abundant nitrogen-anchored sites provided by pyrolyzed metal-organic frameworks (MOFs). Notably, the prepared catalysts exhibit enhanced activity accompanied by structural reconstruction during electrochemical activation, approaching 1 order of magnitude higher mass activity compared to Pt/C in oxygen reduction. Atomic-scale structural characterization reveals that abundant defects and single atoms are formed during the activation process, contributing to a significant boost in the catalytic performance for oxygen reduction reactions. This study provides deep insights into surface reconstruction engineering during electrochemical operations, with practical implications for fuel cell applications.

11.
Circulation ; 148(13): 1023-1034, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37548012

RESUMO

BACKGROUND: The major cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) has emerged as a key mediator of inflammation that underlies cardiovascular disease. On interaction with double-stranded DNA, cGAS generates the second messenger 2',3'-cyclic GMP-AMP (cGAMP) that directly binds to and activates the stimulator of interferon genes, which in turn leads to enhanced expression of genes encoding interferons and proinflammatory cytokines. Here, we show that cGAMP generated by cGAS also directly activates PKGI (cGMP-dependent protein kinase 1), a mechanism that underlies crosstalk between inflammation and blood pressure regulation. METHODS: The ability of cGAS and cGAMP to activate PKGI was assessed using molecular, cellular, and biochemical analyses, and in myography experiments, as well. The release of cGAMP from the endothelium was measured using an ELISA, and its uptake into the vascular smooth muscle was assessed using molecular and biochemical approaches, including the identification and targeting of specific cGAMP transporters. The blood pressure of wild-type and cGAS-/- mice was assessed using implanted telemetry probes. cGAS was activated by in vivo transfection with G3-YSD or mice were made septic by administration of lipopolysaccharide. RESULTS: The detection of cytosolic DNA by cGAS within the vascular endothelium leads to formation of cGAMP that was found to be actively extruded by MRP1 (multidrug resistance protein 1). Once exported, this cGAMP is then imported into neighboring vascular smooth muscle cells through the volume-regulated anion channel, where it can directly activate PKGI. The activation of PKGI by cGAMP mediates vasorelaxation that is dependent on the activity of MRP1 and volume-regulated anion channel, but independent of the canonical nitric oxide pathway. This mechanism of PKGI activation mediates lowering of blood pressure and contributes to hypotension and tissue hypoperfusion during sepsis. CONCLUSIONS: The activation of PKGI by cGAMP enables the coupling of blood pressure to cytosolic DNA sensing by cGAS, which plays a key role during sepsis by mediating hypotension and tissue hypoperfusion.


Assuntos
DNA , Hipotensão , Animais , Camundongos , Pressão Sanguínea , DNA/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Inflamação
12.
J Am Chem Soc ; 146(25): 17003-17008, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865191

RESUMO

We report here a new type of metal fluoride cluster that can be stabilized inside fullerene via in situ fluorine encapsulation followed by exohedral trifluoromethylation, giving rise to rare-earth metal fluoride clusterfullerenes (FCFs) M2F@C80(CF3) (M = Gd and Y). The molecular structure of Gd2F@C80(CF3) was unambiguously determined by single-crystal X-ray analysis to show a µ2-fluoride-bridged Gd-F-Gd cluster with short Gd-F bonds of 2.132(7) and 2.179(7) Å. The 19F NMR spectrum of the diamagnetic Y2F@C80(CF3) confirms the existence of the endohedral F atom, which exhibits a triplet with a large 19F-89Y coupling constant of 74 Hz and a high temperature sensitivity of the 19F chemical shift of 0.057 ppm/K. Theoretical studies reveal the ionic Y-F bonding nature arising from the highest electronegativity of the F element and an electronic configuration of [Y2F]5+@[C80]5- with an open-shell carbon cage, which thus necessitates the stabilization of FCFs by exohedral trifluoromethylation.

13.
J Am Chem Soc ; 146(2): 1563-1571, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38141030

RESUMO

Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.

14.
J Am Chem Soc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865282

RESUMO

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

15.
Cancer ; 130(3): 410-420, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751180

RESUMO

BACKGROUND: For oral cavity squamous cell carcinoma (OSCC), extent of extranodal extension (ENE) (minor, ≤2 mm; major, >2 mm) is differentially prognostic, whereas limitations exist with the 8th edition of American Joint Committee on Cancer/International Union Against Cancer TNM N-classification (TNM-8-N). METHODS: Resected OSCC patients at four centers were included and extent of ENE was recorded. Thresholds for optimal overall survival (OS) discrimination of lymph node (LN) features were established. After dividing into training and validation sets, two new N-classifications were created using 1) recursive partitioning analysis (RPA), and 2) adjusted hazard ratios (aHRs) and were ranked against TNM-8-N and two published proposals. RESULTS: A total of 1460 patients were included (pN0: 696; pN+: 764). Of the pN+ cases, 135 (18%) had bilateral/contralateral LNs; 126 (17%) and 244 (32%) had minor and major ENE, and two (0.3%) had LN(s) >6 cm without ENE (N3a). LN number (1 and >1 vs. 0: aHRs, 1.92 [95% confidence interval (CI), 1.44-2.55] and 3.21 [95% CI, 2.44-4.22]), size (>3 vs. ≤3 cm: aHR, 1.88 [95% CI, 1.44-2.45]), and ENE extent (major vs. minor: aHR, 1.40 [95% CI, 1.05-1.87]) were associated with OS, whereas presence of contralateral LNs was not (aHR, 1.05 [95% CI, 0.81-1.36]). The aHR proposal provided optimal performance with these changes to TNM-8-N: 1) stratification of ENE extent, 2) elimination of N2c and 6-cm threshold, and 3) stratification of N2b by 3 cm threshold. CONCLUSION: A new N-classification improved staging performance compared to TNM-8-N, by stratifying by ENE extent, eliminating the old N2c category and the 6 cm threshold, and by stratifying multiple nodes by size.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estadiamento de Neoplasias , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/cirurgia , Carcinoma de Células Escamosas/patologia , Prognóstico , Linfonodos/patologia , Neoplasias de Cabeça e Pescoço/patologia , Estudos Retrospectivos
16.
BMC Plant Biol ; 24(1): 102, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331761

RESUMO

Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.


Assuntos
Nicotiana , Polinização , Nicotiana/genética , Polinização/genética , Tubo Polínico , Flores , Flavonoides/metabolismo , Purinas/metabolismo
17.
FASEB J ; 37(8): e23084, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37410073

RESUMO

Spermatogenesis is a highly organized process by which undifferentiated spermatogonia self-renew and differentiate into spermatocytes and spermatids. The entire developmental process from spermatogonia to sperm occurs within the seminiferous tubules. Spermatogenesis is supported by the close interaction of germ cells with Sertoli cells. In this study, testicular tissues were collected from Hu sheep at 8 timepoints after birth: 0, 30, 90, 180, 270, 360, 540, and 720 days. Immunofluorescence staining and histological analysis were used to explore the development of male germ cells and Sertoli cells in the Hu sheep testes at these timepoints. The changes in seminiferous tubule diameter and male germ cells in the Hu sheep testes at these different developmental stages were analyzed. Then, specific molecular markers were used to study the proliferation and differentiation of spermatogonia, the timepoint of spermatocyte appearance, and the maturation and proliferation of Sertoli cells in the seminiferous tubules. Finally, the formation of the blood-testes barrier was studied using antibodies against the main components of the blood-testes barrier, ß-catenin, and ZO-1. These findings not only increased the understanding of the development of the Hu sheep testes, but also laid a solid theoretical foundation for Hu sheep breeding.


Assuntos
Células de Sertoli , Testículo , Masculino , Animais , Ovinos , Sêmen , Espermatogênese , Espermatogônias
18.
Inorg Chem ; 63(10): 4691-4696, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394615

RESUMO

In this study, four isostructural pillar-layered frameworks were constructed using a porphyrin layer and an anthracene pillar, which served as the sensitizer and annihilator, respectively, in the triplet-triplet annihilation upconversion (TTA-UC) system. Framework 1 demonstrated the highest upconversion quantum yield of 1.01%. Additionally, 1 and 2 also exhibited down-conversion fluorescence resulting from the porphyrin component. A twist intramolecular charge transfer (TICT) state was observed in the bianthracene chromophore of 2, resulting in transient rotation of two anthracene rings and red-shifted emission. Both computational studies and experiments confirmed the transition from a locally excited state to a TICT state upon the inclusion of polar guest molecules into the framework.

19.
Inorg Chem ; 63(10): 4707-4715, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38410082

RESUMO

A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.

20.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861958

RESUMO

Solid electrolyte-gated transistors exhibit improved chemical stability and can fulfill the requirements of microelectronic packaging. Typically, metal oxide semiconductors are employed as channel materials. However, the extrinsic electron transport properties of these oxides, which are often prone to defects, pose limitations on the overall electrical performance. Achieving excellent repeatability and stability of transistors through the solution process remains a challenging task. In this study, we propose the utilization of a solution-based method to fabricate an In2O3/ZnO heterojunction structure, enabling the development of efficient multifunctional optoelectronic devices. The heterojunction's upper and lower interfaces induce energy band bending, resulting in the accumulation of a large number of electrons and a significant enhancement in transistor mobility. To mimic synaptic plasticity responses to electrical and optical stimuli, we utilize Li+-doped high-k ZrOxthin films as a solid electrolyte in the device. Notably, the heterojunction transistor-based convolutional neural network achieves a high accuracy rate of 93% in recognizing handwritten digits. Moreover, our research involves the simulation of a typical sensory neuron, specifically a nociceptor, within our synaptic transistor. This research offers a novel avenue for the advancement of cost-effective three-terminal thin-film transistors tailored for neuromorphic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA