Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054537

RESUMO

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Assuntos
Células-Tronco Neoplásicas , Norepinefrina , Olanzapina , Animais , Olanzapina/farmacologia , Camundongos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Norepinefrina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Linhagem Celular Tumoral , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/complicações , Camundongos Endogâmicos C57BL , Ansiedade/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Carcinogênese/efeitos dos fármacos , Depressão/tratamento farmacológico
2.
Phys Rev Lett ; 129(9): 093604, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083656

RESUMO

Quantum interference between identical single particles reveals the intrinsic quantum statistic nature of particles, which could not be interpreted through classical physics. Here, we demonstrate quantum interference between nonidentical bosons using a generalized beam splitter based on a quantum memory. The Hong-Ou-Mandel type interference between single photons and single magnons with high visibility is demonstrated, and the crossover from the bosonic to fermionic quantum statistics is observed by tuning the beam splitter to be non-Hermitian. Moreover, multiparticle interference that simulates the behavior of three fermions by three input photons is realized. Our work extends the understanding of the quantum interference effects and demonstrates a versatile experimental platform for studying and engineering quantum statistics of particles.

3.
Brain Behav Immun ; 93: 368-383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33160090

RESUMO

Chronic stress is well-known to cause physiological distress that leads to body balance perturbations by altering signaling pathways in the neuroendocrine and sympathetic nervous systems. This increases allostatic load, which is the cost of physiological fluctuations that are required to cope with psychological challenges as well as changes in the physical environment. Recent studies have enriched our knowledge about the role of chronic stress in disease development, especially carcinogenesis. Stress stimulates the hypothalamic-pituitaryadrenal (HPA) axis and the sympathetic nervous system (SNS), resulting in an abnormal release of hormones. These activate signaling pathways that elevate expression of downstream oncogenes. This occurs by activation of specific receptors that promote numerous cancer biological processes, including proliferation, genomic instability, angiogenesis, metastasis, immune evasion and metabolic disorders. Moreover, accumulating evidence has revealed that ß-adrenergic receptor (ADRB) antagonists and downstream target inhibitors exhibit remarkable anti-tumor effects. Psychosomatic behavioral interventions (PBI) and traditional Chinese medicine (TCM) also effectively relieve the impact of stress in cancer patients. In this review, we discuss recent advances in the underlying mechanisms that are responsible for stress in promoting malignancies. Collectively, these data provide approaches for NextGen pharmacological therapies, PBI and TCM to reduce the burden of tumorigenesis.


Assuntos
Alostase , Neoplasias , Humanos , Sistema Hipotálamo-Hipofisário , Neoplasias/terapia , Sistemas Neurossecretores , Sistema Hipófise-Suprarrenal , Estresse Fisiológico , Estresse Psicológico , Sistema Nervoso Simpático
4.
Cell Metab ; 36(7): 1598-1618.e11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38772364

RESUMO

Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1). Mechanistically, SD-dysregulated CLOCK hypertransactivates ACSL1 to produce PA-CoA, which facilitates CLOCK-Cys194 S-palmitoylation in a ZDHHC5-dependent manner. This positive transcription-palmitoylation feedback loop prevents ubiquitin-proteasomal degradation of CLOCK, causing FAO-sensed circadian disruption to maintain SD-enhanced cancer stemness. Intriguingly, timed ß-endorphin resets rhythmic Clock and Acsl1 expression to alleviate SD-enhanced tumorigenesis. Sleep quality and serum ß-endorphin are negatively associated with both cancer development and CLOCK/ACSL1 expression in patients with cancer, suggesting dawn-supplemented ß-endorphin as a potential chronotherapeutic strategy for SD-related cancer.


Assuntos
Carcinogênese , Ritmo Circadiano , Coenzima A Ligases , Ácidos Graxos , Oxirredução , Ácidos Graxos/metabolismo , Humanos , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Privação do Sono/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética
5.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832923

RESUMO

In this study, using gas chromatography-mass spectrometry (HS-SPME-GC-MS), electronic nose (E-nose), high performance liquid chromatography (HPLC), and electronic tongue (E-tongue) to analyze the effect of ultra-high pressure (UHP) synergistic enzymatic hydrolysis on the flavor compounds of enzymatic hydrolysates of S. rugoso-annulata. The results demonstrated that 38 volatile flavor substances were identified in the enzymatic hydrolysates of S. rugoso-annulata treated at atmospheric pressure and 100, 200, 300, 400, and 500 MPa, mainly 6 esters, 4 aldehydes, 10 alcohols, 5 acids, and 13 other volatile flavor substances, and the most kinds of flavor substances reached 32 kinds when the pressure was 400 MPa. E-nose can effectively distinguish the overall changes of enzymatic hydrolysates of S. rugoso-annulata treated with atmospheric pressure and different pressures. There was 1.09 times more umami amino acids in the enzymatic hydrolysates at 400 MPa than in the atmospheric pressure enzymatic hydrolysates and 1.11 times more sweet amino acids at 500 MPa than in the atmospheric pressure enzymatic hydrolysates. The results of the E-tongue indicate that the UHP treatment increased umami and sweetness and reduced bitterness, which was also confirmed by the results of amino acid and 5'-nucleotide analysis. In conclusion, the UHP synergistic enzymatic hydrolysis can effectively improve the overall flavor of the enzymatic hydrolysates of S. rugoso-annulata; this study also lays the theoretical foundation for the deep processing and comprehensive utilization of S. rugoso-annulata.

6.
Cell Death Dis ; 14(10): 682, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845207

RESUMO

Cancer stem-like cells (CSCs) contribute to cancer metastasis, drug resistance and tumor relapse, yet how amino acid metabolism promotes CSC maintenance remains exclusive. Here, we identify that proline synthetase PYCR1 is critical for breast cancer stemness and tumor growth. Mechanistically, PYCR1-synthesized proline activates cGMP-PKG signaling to enhance cancer stem-like traits. Importantly, cGMP-PKG signaling mediates psychological stress-induced cancer stem-like phenotypes and tumorigenesis. Ablation of PYCR1 markedly reverses psychological stress-induced proline synthesis, cGMP-PKG signaling activation and cancer progression. Clinically, PYCR1 and cGMP-PKG signaling components are highly expressed in breast tumor specimens, conferring poor survival in breast cancer patients. Targeting proline metabolism or cGMP-PKG signaling pathway provides a potential therapeutic strategy for breast patients undergoing psychological stress. Collectively, our findings unveil that PYCR1-enhanced proline synthesis displays a critical role in maintaining breast cancer stemness.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Recidiva Local de Neoplasia , Oxirredutases , Prolina/metabolismo , delta-1-Pirrolina-5-Carboxilato Redutase
7.
Brain Behav Immun Health ; 26: 100533, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281466

RESUMO

Circadian clocks orchestrate daily rhythms in many organisms and are essential for optimal health. Circadian rhythm disrupting events, such as jet-lag, shift-work, night-light exposure and clock gene alterations, give rise to pathologic conditions that include cancer and clinical depression. This review systemically describes the fundamental mechanisms of circadian clocks and the interacting relationships among a broken circadian clock, cancer and depression. We propose that this broken clock is an emerging link that connects depression and cancer development. Importantly, broken circadian clocks, cancer and depression form a vicious feedback loop that threatens systemic fitness. Arresting this harmful loop by restoring normal circadian rhythms is a potential therapeutic strategy for treating both cancer and depression.

8.
Int J Nanomedicine ; 12: 4981-4989, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28761339

RESUMO

Arenobufagin (ABG) is a major active component of toad venom, a traditional Chinese medicine used for cancer therapy. However, poor aqueous solubility limits its pharmacological studies in vivo due to administration difficulties. In this study, we aimed to develop a polymeric nanomicelle (PN) system to enhance the solubility of ABG for effective intravenous delivery. ABG-loaded PNs (ABG-PNs) were prepared with methoxy poly (ethylene glycol)-block-poly (d,l-lactic-co-glycolic acid) (mPEG-PLGA) using the solvent-diffusion technique. The obtained ABG-PNs were 105 nm in size with a small polydispersity index of 0.08. The entrapment efficiency and drug loading were 71.9% and 4.58%, respectively. Cellular uptake of ABG-PNs was controlled by specific clathrin-mediated endocytosis. In addition, ABG-PNs showed improved drug pharmacokinetics with an increased area under the curve value (a 1.73-fold increase) and a decreased elimination clearance (37.8% decrease). The nanomicelles showed increased drug concentrations in the liver and lung. In contrast, drug concentrations in both heart and brain were decreased. Moreover, the nanomicelles enhanced the anticancer effect of the pure drug probably via increased cellular uptake of drug molecules. In conclusion, the mPEG-PLGA-based nanomicelle system is a satisfactory carrier for the systemic delivery of ABG.


Assuntos
Antineoplásicos/administração & dosagem , Bufanolídeos/administração & dosagem , Bufanolídeos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Portadores de Fármacos/administração & dosagem , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Masculino , Micelas , Tamanho da Partícula , Poliésteres , Polietilenoglicóis , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Solubilidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA