RESUMO
Turnover numbers (kcat), which indicate an enzyme's catalytic efficiency, have a wide range of applications in fields including protein engineering and synthetic biology. Experimentally measuring the enzymes' kcat is always time-consuming. Recently, the prediction of kcat using deep learning models has mitigated this problem. However, the accuracy and robustness in kcat prediction still needs to be improved significantly, particularly when dealing with enzymes with low sequence similarity compared to those within the training dataset. Herein, we present DeepEnzyme, a cutting-edge deep learning model that combines the most recent Transformer and Graph Convolutional Network (GCN) to capture the information of both the sequence and 3D-structure of a protein. To improve the prediction accuracy, DeepEnzyme was trained by leveraging the integrated features from both sequences and 3D-structures. Consequently, DeepEnzyme exhibits remarkable robustness when processing enzymes with low sequence similarity compared to those in the training dataset by utilizing additional features from high-quality protein 3D-structures. DeepEnzyme also makes it possible to evaluate how point mutations affect the catalytic activity of the enzyme, which helps identify residue sites that are crucial for the catalytic function. In summary, DeepEnzyme represents a pioneering effort in predicting enzymes' kcat values with improved accuracy and robustness compared to previous algorithms. This advancement will significantly contribute to our comprehension of enzyme function and its evolutionary patterns across species.
Assuntos
Aprendizado Profundo , Enzimas , Enzimas/química , Enzimas/metabolismo , Enzimas/genética , Conformação Proteica , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , AlgoritmosRESUMO
Monitoring mitochondrial esterase activity is crucial not only for investigating mitochondrial metabolism but also for assessing the effectiveness of mitochondrial-targeting prodrugs. However, accurately detecting esterase activity within mitochondria poses challenges due to its ubiquitous presence in cells and the uncontrolled localization of fluorogenic probes. To overcome this hurdle and reveal variations among different mitochondria, we isolated mitochondria and preserved their activity and functionality in a buffered environment. Subsequently, we utilized a laboratory-built nano-flow cytometer in conjunction with an esterase-responsive calcein-AM fluorescent probe to measure the esterase activity of individual mitochondria. This approach enabled us to investigate the influence of temperature, pH, metal ions, and various compounds on the mitochondrial esterase activity without any interference from other cellular constituents. Interestingly, we observed a decline in the mitochondrial esterase activity following the administration of mitochondrial respiratory chain inhibitors. Furthermore, we found that mitochondrial esterase activity was notably higher in the presence of a high concentration of ATP compared to that of ADP and AMP. Additionally, we noticed a correlation between elevated levels of complex IV and increased mitochondrial esterase activity. These findings suggest a functional connection between the mitochondrial respiratory chain and mitochondrial esterase activity. Moreover, we detected an upsurge in mitochondrial esterase activity during the early stages of apoptosis, while cellular esterase activity decreased. This highlights the significance of analyzing enzyme activity within specific organelle subregions. In summary, the integration of a nano-flow cytometer and fluorescent dyes introduces a novel method for quantifying mitochondrial enzyme activity with the potential to uncover the alterations and unique functions of other mitochondrial enzymes.
Assuntos
Corantes Fluorescentes , Mitocôndrias , Mitocôndrias/metabolismo , Corantes Fluorescentes/química , Apoptose , Membranas Mitocondriais , Esterases/metabolismoRESUMO
Group A rotavirus (RVA) is considered an important cause of acute gastroenteritis (AGE) in all age groups, especially in children. We investigated the epidemiology of RVA in outpatients aged ≤ 16 years at the Children's Hospital of Fudan University, Shanghai, China. In this study, 16.6% (246/1482) were infected with RVA. The detection rate of RVA was significantly higher in the year of 2021 (20.3%, 147/725) compared to the year of 2020 (14.5%, 77/531) and 2022 (9.7%, 22/226) (p = 0.000). RVA infection was prevalent in all seasons from 2020 to 2022, with a different monthly distribution observed in different years. Among 246 RVA-positive samples, 14 different RVA genotypes were detected with different frequencies. Overall, G9P[8] (45.5%, 112/246) was the most common RVA genotype, followed by G8P[8] (37.4%, 92/246) and G3P[8] (4.1%, 10/246). The prevalence of G/P combinations varied from 2020 to 2022. G9P[8] was the most prevalent circulating genotype in 2020 (68.2%, 15/22) and 2021 (57.8%, 85/147). However, G8P[8] (68.8%, 53/77) suddenly became the most prevalent genotype in 2022 after being first identified in 2020 and prevalent in 2021. The G8 strains detected in the study were all clustered to DS-1-like G8 strains with the closest genetic distance to strains circulating in Southeast Asia. Our study demonstrated the diversity of circulating RVA genotypes in Shanghai. The sudden emergence and high prevalence of unusual G8P[8] strains deserve more concern and indicate the need for continuous surveillance of RVA in children with AGE in the future to refine future vaccine strategy.
Assuntos
Gastroenterite , Rotavirus , Criança , Humanos , Rotavirus/genética , Pacientes Ambulatoriais , Prevalência , China/epidemiologia , Gastroenterite/epidemiologiaRESUMO
BACKGROUND: The immature and suppressed immune response makes transplanted children a special susceptible group to Parvovirus B19 (PVB19). However, the clinical features of transplanted children with PVB19 infection haven't been comprehensively described. METHODS: We searched the medical records of all the transplant recipients who attended the Children's Hospital of Fudan University from 1 Oct 2020 to 31 May 2023, and reviewed the medical literature for PVB19 infection cases among transplanted children. RESULTS: A total of 10 cases of PVB19 infection were identified in 201 transplanted children at our hospital, and the medical records of each of these cases were shown. Also, we retrieved 40 cases of PVB19 infection among transplanted children from the literature, thus summarizing a total of 50 unique cases of PVB19 infection. The median time to the first positive PVB19 DNA detection was 14 weeks post-transplantation. PVB19 IgM and IgG were detected in merely 26% and 24% of the children, respectively. The incidence of graft loss/dysfunction was as high as 36%. Hematopoietic stem cell transplant (HSCT) recipients showed higher PVB19 load, lower HGB level, greater platelet damage, lower PVB19 IgM/IgG positive rates, and more graft dysfunction than solid-organ transplant (SOT) recipients, indicating a more incompetent immune system. CONCLUSIONS: Compared with the published data of transplanted adults, transplanted children displayed distinct clinical features upon PVB19 infection, including lower PVB19 IgM/IgG positive rates, more graft dysfunction, and broader damage on hematopoietic cell lines, which was even more prominent in HSCT recipients, thus should be of greater concern.
Assuntos
Anticorpos Antivirais , Transplante de Células-Tronco Hematopoéticas , Infecções por Parvoviridae , Parvovirus B19 Humano , Humanos , Parvovirus B19 Humano/imunologia , Parvovirus B19 Humano/genética , Criança , Feminino , Masculino , Pré-Escolar , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Anticorpos Antivirais/sangue , Lactente , Adolescente , Imunoglobulina M/sangue , Imunoglobulina G/sangue , Transplantados , DNA Viral/sangue , Carga Viral , Transplante de Órgãos/efeitos adversosRESUMO
Correlated analysis of multiple biochemical parameters at the single-particle level and in a high-throughput manner is essential for insights into the diversity and functions of biological nanoparticles (BNPs), such as bacteria and subcellular organelles. To meet this challenge, we developed a highly sensitive spectral nano-flow cytometer (S-nFCM) by integrating a spectral recording module to a laboratory-built nFCM that is 4-6 orders of magnitude more sensitive in side scattering detection and 1-2 orders of magnitude more sensitive in fluorescence detection than conventional flow cytometers. An electron-multiplying charge-coupled device (EMCCD) was used to acquire the full fluorescence spectra of single BNPs upon holographic grating dispersion. Up to 10,000 spectra can be collected in 1 min with 2.1 nm resolution. The precision, linearity, and sensitivity were examined. Complete discernment of single influenza viruses against the background signal, discrimination of different strains of marine cyanobacteria in a mixed sample based on their spectral properties of natural fluorescence, classification of bacterial categories exhibiting different patterns of antigen expression, and multiparameter analysis of single mitochondria for drug discovery were successfully demonstrated.
Assuntos
Nanopartículas , Mitocôndrias , OrganelasRESUMO
BACKGROUND: Human adenovirus (HAdV) has been recognized as one of the common enteric viruses associated with acute gastroenteritis (AGE) in children. The aim of this study was carried out to illustrate the epidemiological characterization of HAdV Infections among children younger than 15 years in Shanghai during COVID-19. METHODS: During May 2020 and April 2022, 1048 fecal samples were collected from children ≤ 15 years diagnosed with AGE in the Children's Hospital of Fudan University. HAdV was identified by PCR and sequenced with specific primers. All the obtained sequences were analyzed by MEGA (version 6.0). Demographic information and clinical features data were also collected and analyzed. RESULTS: In total, 97 (9.3%, 97/1048) samples were detected to be HAdV during May 2020 and April 2022. We found an atypical upsurge in HAdV infection in the year 2021 after a major suppression in the year 2020. Approximately 84.5% (82/97) of HAdV-infected children were aged 0-60 months. Among the 97 HAdV-positive samples, only two species and five genotypes were detected. HAdV-F (88.7%, 86/97) was the most prevalent species and HAdV-F41 (87.6%, 85/97) was the most common genotype. Diarrhea, vomiting, and fever were the main clinical manifestations in children infected with HAdV. The children aged from 0 to 12 months showed simpler patterns of clinical presentation than those of children older than 13 months. CONCLUSIONS: Our findings described the epidemiological changes of HAdV infection in children with AGE during the COVID-19, which further underscored the importance of continuous surveillance of HAdV at both local and global scales.
Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , COVID-19 , Gastroenterite , Humanos , Criança , Lactente , Infecções por Adenovirus Humanos/epidemiologia , Pacientes Ambulatoriais , China/epidemiologia , COVID-19/epidemiologia , Gastroenterite/epidemiologia , Adenovírus Humanos/genética , Genótipo , FilogeniaRESUMO
Herein, a nitrogen-embedded quintuple [7]helicene (N-Q7H) with an azapentabenzocorannulene core, which can be considered to be a helicene/azacorannulene hybrid π-system, was synthesized from azapentabenzocorannulene in a three-step process. N-Q7H is the first example of a multiple helicene with an azabuckybowl core. Single-crystal X-ray diffractometry unambiguously confirmed the structure of the propeller-shaped hybrid π-system. Owing to nitrogen-atom doping in the multiple helicenes and effective hybridization between the helicene and azacorannulene, N-Q7H exhibits considerably redshifted absorption and emission (yellow-to-green color change and green-to-near-infrared fluorescence change) relative to the azapentabenzocorannulene core. The broad absorption from the ultraviolet-visible to the NIR region is ascribable to the allowed transition between the highest occupied molecular orbital and the lowest unoccupied molecular orbital after symmetry breaking, as revealed by density functional theory calculations. Compared to previous propeller-shaped multiple helicenes with corannulene or hexabenzocoronene (etc.) as cores, N-Q7H demonstrates a significantly higher NIR fluorescence quantum efficiency of 28%. Additionally, the chiral-resolution and redox properties of N-Q7H were investigated. The excellent photophysical and inherent chiral properties of N-Q7H suggest that azapentabenzocorannulene can be used as an outstanding nitrogen-embedded core to construct novel multiple helicenes with wide application potential, including as NIR fluorescent bio-probes.
RESUMO
As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.
RESUMO
Nonpharmaceutical interventions (NPIs) taken to combat the coronavirus disease 2019 (COVID-19) pandemic have not only decreased the spread of severe acute respiratory syndrome coronavirus 2 but also have had an impact on the prevalence of other common viruses. This study aimed to investigate the long-term impact of NPIs on common respiratory and enteric viruses among children in Shanghai, China, as NPIs were relaxed after June 2020. The laboratory results and clinical data of outpatient children with acute respiratory tract infections (ARTI) and acute gastroenteritis (AGE) were analyzed and compared between the post-COVID-19 period (from June 2020 to January 2022) and pre-COVID-19 period (from June 2018 to January 2020). A total of 107 453 patients were enrolled from June 2018 to January 2022, including 43 190 patients with ARTI and 64 263 patients with AGE. The positive rates of most viruses decreased during the post-COVID-19 period, with the greatest decrease for influenza A (-0.94%), followed by adenoviruses (AdV) (-61.54%), rotaviruses (-48.17%), and influenza B (-40%). However, the positive rates of respiratory syncytial virus (RSV) and enteric AdV increased during the post-COVID-19 period as the NPIs were relaxed. Besides this, in the summer of 2021, an unexpected out-of-season resurgence of RSV activity was observed, and the resurgence was more prominent among children older than 5 years. The effectiveness of the current relaxed NPIs in control of common respiratory and enteric viruses was variable. Relaxation of NPIs might lead to the resurgence of common viruses.
Assuntos
COVID-19 , Infecções por Enterovirus , Influenza Humana , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Antígenos Virais , COVID-19/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , Infecções por Enterovirus/epidemiologia , Humanos , Influenza Humana/epidemiologia , Pacientes Ambulatoriais , Pandemias , Infecções Respiratórias/epidemiologiaRESUMO
BACKGROUND: Enterovirus (EV), parechovirus (HPeV), herpes simplex virus 1 and 2 (HSV1/2) are common viruses leading to viral central nervous system (CNS) infections which are increasingly predominant but exhibit deficiency in definite pathogen diagnosis with gold-standard quantitative PCR method. Previous studies have shown that droplet digital PCR (ddPCR) has great potential in pathogen detection and quantification, especially in low concentration samples. METHODS: Targeting four common viruses of EV, HPeV, HSV1, and HSV2 in cerebrospinal fluid (CSF), we developed a multiplex ddPCR assay using probe ratio-based multiplexing strategy, analyzed the performance, and evaluated it in 97 CSF samples collected from patients with suspected viral CNS infections on a two-channel ddPCR detection system. RESULTS: The four viruses were clearly distinguished by their corresponding fluorescence amplitude. The limits of detection for EV, HPeV, HSV1, and HSV2 were 5, 10, 5, and 10 copies per reaction, respectively. The dynamic range was at least four orders of magnitude spanning from 2000 to 2 copies per reaction. The results of 97 tested clinical CSF specimens were identical to those deduced from qPCR/qRT-PCR assays using commercial kits. CONCLUSION: The multiplex ddPCR assay was demonstrated to be an accurate and robust method which could detect EV, HPeV, HSV1, and HSV2 simultaneously. It provides a useful tool for clinical diagnosis and disease monitoring of viral CNS infections.
Assuntos
Viroses do Sistema Nervoso Central , Infecções por Enterovirus , Enterovirus , Herpesvirus Humano 1 , Parechovirus , Infecções por Picornaviridae , Enterovirus/genética , Infecções por Enterovirus/diagnóstico , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Humanos , Parechovirus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodosRESUMO
BACKGROUND: Group A rotavirus (RVA) remains the main causative agent of acute diarrhea among children under five years in countries that have not yet introduced the RVA vaccine worldwide. Long-term and continuous monitoring data on RVA infection in outpatient children were lacking in Shanghai. We investigated the prevalence and distribution of RVA genotypes in outpatient children with acute diarrhea in Shanghai from 2012 to 2018. METHODS: Stool specimens of outpatient children under five years were collected from the Children's Hospital of Fudan University in Shanghai, China. All the samples enrolled in this study were detected and characterized for the P and G genotypes of RVA were determined using the semi-multiplex RT-PCR technique. RESULTS: Of 1814 children enrolled with acute diarrhea and having specimens collected, 246 (13.6%) were infected with RVA. The highest frequency of RVA was observed in children younger than two years old (87.0%, 214/246). Year-round RVA transmission was observed and the RVA detection rate peaked every winter and troughed in summer. In this study, 12 different RVA strains were identified in children. G9P[8] (49.2%, 121/246) was detected as the most prevalent genotype, followed by G-P[8] (22.8%, 56/246), G3P[8] (11.4%, 28/246), and G9P- (4.9%, 12/246). Although RVA strains detected in this study varied with the time, G9P[8] has been the most predominant circulating genotype since 2012. Furthermore, 12.2% (30/246) RVA positive samples were co-infected with other diarrhea viruses. CONCLUSION: The present analysis showed that RVA was still a major cause of children with acute diarrhea in Shanghai from 2012 to 2018. A great diversity of RVA strains circulated in children with acute diarrhea with G9P[8] being the predominant genotype since 2012. Long-term and continuous monitoring of RVA genotypes is therefore indispensable to refine future vaccine strategy in Shanghai.
Assuntos
Infecções por Rotavirus , Rotavirus , Criança , Pré-Escolar , China/epidemiologia , Diarreia/epidemiologia , Fezes , Genótipo , Humanos , Pacientes Ambulatoriais , Prevalência , Rotavirus/genética , Infecções por Rotavirus/epidemiologiaRESUMO
BACKGROUND: Human rhinovirus (HRV) is the predominant etiological agent of the common cold in children and adults. A recent study showed that the inhibitory effect of face masks on viral shedding of HRV was less prominent than that on other respiratory viruses. Considering that most Chinese people have worn face masks in public area since the outbreak of coronavirus disease 2019, we aimed to find out whether HRV prevailed among children in 2020 and demonstrate the details of the epidemiological features of HRV under such a special circumstance. METHODS: We summarized the incidences of various respiratory virus infections in patients who visited the Children's Hospital of Fudan University during 2018-2020, and genotyped HRV positive nasopharyngeal specimens collected from 316 inpatients and 72 outpatients that visited the hospital in 2020. RESULTS: There was a major prevalence of HRV among children in the latter half of 2020, with a clear seasonality that HRV-As prevailed in summer while HRV-Cs in autumn. HRV-As were more prone to cause severe lower respiratory tract infections (LRTI), while HRV-Cs were closely associated with childhood wheezing. The predominant genotypes were A11, A28, A47, A82, A101, C40 and C43. Notably, A21, A82 and A101 took up larger proportions in severe cases than in non-severe cases. CONCLUSIONS: Our findings described a major prevalence of HRVs among children in 2020, which highlight the unique transmitting pattern of HRV and help to narrow the targets for antiviral strategies.
Assuntos
COVID-19 , Infecções por Picornaviridae , Adulto , Criança , China/epidemiologia , Humanos , Máscaras , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/prevenção & controle , Rhinovirus/genéticaRESUMO
Telomere length (TL) is a highly relevant biomarker for age-associated diseases and cancer, yet its clinical applications have been hindered by the inability of existing methods to rapidly measure the TL distribution and the percentage of chromosomes with critically short telomeres (CSTs, < 3 kb). Herein, we report the development of a high-throughput method to measure TL at the single-chromosome level. Metaphase chromosomes are isolated, hybridized with the Alexa Fluor 488-labeled telomeric peptide nucleic acid probe, and analyzed using a laboratory-built ultrasensitive nano-flow cytometer. The fluorescence intensity of individual chromosomes is converted to TL in kilobases upon external calibration. With an analysis rate of several thousand chromosomes per minute, a statistically robust TL distribution histogram is acquired in minutes, and the percentage of chromosomes with CSTs can be quickly assessed. By analyzing peripheral blood lymphocytes of 158 healthy donors, TL is found to shorten with age at a rate of 64 ± 3 bp/year and the percentage of chromosomes with CSTs increases with age at a rate of 0.32 ± 0.02%/year. Moreover, the data of 28 patients with chronic myeloid leukemia (CML) indicate that telomeres are significantly shorter at the time of diagnosis and the clinical phases of CML are closely associated with TL and the percentage of chromosomes with CSTs. This powerful tool could greatly deepen our understanding of telomere biology and improve the clinical utility of telomere biomarkers.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Telômero , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Telômero/genéticaRESUMO
BACKGROUND: The multifaceted non-pharmaceutical interventions (NPIs) taken during the COVID-19 pandemic not only decrease the spreading of the SARS-CoV-2, but have impact on the prevalence of other viruses. This study aimed to explore the prevalence of common respiratory viruses among hospitalized children with lower respiratory tract infections (LRTI) in China during the COVID-19 pandemic. METHODS: Respiratory specimens were obtained from children with LRTI at Children's Hospital of Fudan University for detection of respiratory syncytial virus (RSV), adenovirus (ADV), parainfluenza virus (PIV) 1 to 3, influenza virus A (FluA), influenza virus B (FluB), human metapneumovirus (MPV) and rhinovirus (RV). The data were analyzed and compared between the year of 2020 (COVID-19 pandemic) and 2019 (before COVID-19 pandemic). RESULTS: A total of 7107 patients were enrolled, including 4600 patients in 2019 and 2507 patients in 2020. Compared with 2019, we observed an unprecedented reduction of RSV, ADV, FluA, FluB, and MPV infections in 2020, despite of reopening of schools in June, 2020. However, the RV infection was significantly increased in 2020 and a sharp increase was observed especially after reopening of schools. Besides, the PIV infection showed resurgent characteristic after September of 2020. The mixed infections were significantly less frequent in 2020 compared with the year of 2019. CONCLUSIONS: The NPIs during the COVID-19 pandemic have great impact on the prevalence of common respiratory viruses in China. Meanwhile, we do need to be cautious of a possible resurgence of some respiratory viruses as the COVID-19 restrictions are relaxed.
Assuntos
COVID-19/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Distribuição por Idade , COVID-19/prevenção & controle , Criança , Pré-Escolar , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/virologia , Feminino , Hospitalização , Hospitais Pediátricos , Humanos , Lactente , Masculino , Prevalência , SARS-CoV-2 , Estações do Ano , Vírus/classificação , Vírus/isolamento & purificaçãoRESUMO
BACKGROUND: In addition to rotavirus and norovirus, human adenovirus (HAdV) and classic human astrovirus (classic HAstV) are important pathogens of acute diarrhea in infants and young children. Here, we present the molecular epidemiology of HAdV and classic HAstV in children with acute diarrhea in Shanghai. METHODS: Fecal specimens were collected from 804 outpatient infants and young children diagnosed with acute diarrhea in Shanghai from January 2017 to December 2018. All of the samples were screened for the presence of HAdV and classic HAstV. HAdV and classic HAstV were detected using traditional PCR and reverse-transcription PCR, respectively. All of the HAdV and classic HAstV positive samples were genotyped by phylogenetic analysis. RESULTS: Among the 804 fecal samples, 8.58% (69/804) of samples were infected with either HAdV or classic HAstV, and five were co-infected with two diarrhea viruses. The overall detection rates of HAdV and classic HAstV were 3.47% (28/804) and 5.22% (42/804), respectively. Four subgroups (A, B, C, and F) and seven genotypes (HAdV-C1, -C2, -B3, -C5, -A31, -F40, and -F41) of HAdV were detected. Subgroup F had the highest constituent ratio at 64.29% (18/28), followed by non-enteric HAdV of subgroup C (21.43%, 6/28) and subgroup B 10.71% (3/28). HAdV-F41 (60.71%, 17/28) was the dominant genotype, followed by HAdV-C2 (14.29%, 4/28) and HAdV-B3 (10.71%, 3/28). Two genotypes of classic HAstV (HAstV-1 and HAstV-5) were identified in 42 samples during the study period; HAstV-1 (95.24%, 40/42) was the predominant genotype, and the other two strains were genotyped as HAstV-5. No significant differences were found between boys and girls in the detection rates of HAdV (P = 0.604) and classic HAstV (P = 0.275). Over half of the HAdV infections (82.14%, 23/28) and classic HAstV infections (66.67%, 28/42) occurred in children less than 36 months. Seasonal preferences of HAdV and classic HAstV infections were summer and winter, respectively. In this study, the common clinical symptoms of children with acute diarrhea were diarrhea, vomiting, fever and abdominal pain. CONCLUSIONS: Our findings indicate that HAdV and classic HAstV play important roles in the pathogenesis of acute diarrhea in children in Shanghai. Systematic and long-term surveillance of HAdV and classic HAstV are needed to monitor their prevalence in children and prevent major outbreak.
Assuntos
Adenovírus Humanos , Gastroenterite , Mamastrovirus , Adenovírus Humanos/genética , Criança , Pré-Escolar , China/epidemiologia , Diarreia/epidemiologia , Fezes , Feminino , Genótipo , Humanos , Lactente , Masculino , Mamastrovirus/genética , Filogenia , PrevalênciaRESUMO
Despite widespread applications for cancer treatment, chemotherapy is restricted by several limitations, including low targeting specificity, acquired drug resistance, and concomitant adverse side effects. It remains challenging to overcome these drawbacks. Herein, we report a new bioenergetic approach for treating cancer efficiently. As a proof-of-concept, we construct activatable mitochondria-targeting organoarsenic prodrugs from organoarsenic compounds and traditional chemotherapeutics. These prodrugs could accomplish selective delivery and controlled release of both therapeutic agents to mitochondria, which synergistically promote mitochondrial ROS production and induce mitochondrial DNA damage, finally leading to mitochondria-mediated apoptosis of cancer cells. Our inâ vitro and inâ vivo experiments reveal the excellent anticancer efficacy of these prodrugs, underscoring the encouraging outlook of this strategy for effective cancer therapy.
Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Neoplasias/terapia , Pró-Fármacos/químicaRESUMO
Human cytomegalovirus (HCMV) is the leading cause of congenital infection and an opportunistic pathogen capable of establishing lifelong latency. In the present study, we aimed to investigate the distribution of glycoprotein B, H, and N in infants of Shanghai and correlate the genotype with active and latent HCMV infection. A total of 129 urine samples were collected between August 2014 and December 2015 from infants under 3 years with HCMV infection. Nested PCR was used to amplify the regions of UL55 (gB), UL75 (gH), and UL73 (gN). Gene sequencing and phylogenetic analyses were used to classify the genotypes. Overall, regarding gB, gB1 (57.27%) was predominant, followed by gB3 (41.82%) and gB4 (0.91%). gH1 (54.33%) was the most prevalent genotype of gH, followed by gH2 (45.67%). Concerning gN, we detected gN1 (17.44%), gN2 (2.33%), gN3a (29.07%), gN3b (8.14%), gN4a (13.95%), gN4b (15.12%), and gN4c (13.95%), among which gN3a was the dominant genotype. All the expected genotypes were present except gB2 in children with active infection: gB1 (56.25%), gB3 (42.5%), gB4 (1.25%), gH1 (58.70%), gH2 (41.30%), gN1 (19.05%), gN2 (3.17%), gN3a (25.40%), gN3b (6.35%), gN4a (15.87%), gN4b (17.46%), and gN4c (12.70%). However, among latent cases, we detected gB1 (60%), gB3 (40%), gH1 (42.86%), gH2 (57.14%), gN1 (13.04%), gN3a (39.13%), gN3b (13.04%), gN4a (8.70%), gN4b (8.70%), and gN4c (17.39%), respectively. gB2, gB4, and gN2 were absent in this group. The results revealed that gB1, gH1, and gN3a were predominant in the infants of Shanghai. gH showed different trends among children with active and latent infection.
RESUMO
BACKGROUND: Noroviruses (NoVs) are considered an important cause of acute gastroenteritis (AGE) across all age groups, especially in children under 5 years of age. We investigated the epidemiology of noroviruses in outpatient children from the Children's Hospital of Fudan University in Shanghai, China. METHODS: Stool specimens were collected between January 2012 and December 2017 from 1433 children under 5 years of age with acute gastroenteritis. All samples were analysed by conventional reverse transcription-polymerase chain reaction (RT-PCR) for genogroup II NoVs amplifying both the RNA-dependent RNA polymerase (RdRp) and partial capsid genes. The Norovirus Genotyping Tool v.2.0 ( https://www.rivm.nl/mpf/typingtool/norovirus/ ) was used for genotyping the strains, and phylogenetic analyses were conducted by MEGA 6.0. RESULTS: From 2012 to 2017, GII NoVs were detected in 15.4% (220/1433) of the samples, with the highest detection rate in children aged 7-12 months (19.2%, 143/746). The seasons with the highest prevalence of GII NoVs infection were autumn and winter. Based on genetic analysis of RdRp, GII.Pe (74.5%%, 137/184) was the most predominant RdRp genotype from 2013 to 2017, while GII.P4 played a dominant role in 2012 (55.6%, 21/36). Among the capsid genotypes, the most prevalent NoV genotype from 2012 to 2017 was GII.4 (74.1%, 163/220). On the basis of genetic analysis of RdRp and capsid sequences, the strains were clustered into - 19 RdRp/capsid genotypes, and 12 of them were discordant, such as GII.Pe/GII.4-Sydney_2012, GII.P12/GII.3, GII.P7/GII.6, GII.Pe/GII.3, and GII.P16/GII.2. Starting with 2013, GII.Pe/GII.4-Sydney_2012 had completely replaced the pandemic GII.P4-2006b/GII.4-2006b subtype and was detected in children across all age groups. CONCLUSIONS: The present study shows high detection rates and the genetic diversity of circulating NoV GII genotypes in paediatric AGE samples from Shanghai. The findings emphasize the importance of continuous molecular surveillance of emerging NoV strains.
Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Gastroenterite/epidemiologia , Gastroenterite/virologia , Variação Genética , Norovirus/classificação , Norovirus/genética , Doença Aguda , Proteínas do Capsídeo/genética , Pré-Escolar , China/epidemiologia , Feminino , Gastroenterite/patologia , Genótipo , Hospitais Pediátricos , Humanos , Lactente , Recém-Nascido , Masculino , Epidemiologia Molecular , Norovirus/isolamento & purificação , Filogenia , Prevalência , Estações do AnoRESUMO
Background: Human adenovirus (HAdV) is considered a significant enteropathogen associated with sporadic diarrhea in children. However, limited data are available regarding the epidemiology of HAdV in hospitalized children with viral diarrhea in Shanghai. The aim of this study was to characterize the epidemiology of HAdVs and describe their association with acute diarrhea in hospitalized children. Methods: A total of 674 fecal samples were subjected to PCR or RT-PCR to detect RVA, HuCV, HAstV, and HAdV. Results: HAdV infections were detected in 4.7% (32/674) of specimens, with detection rates of 13.4% (11/82), 4.6% (8/174), 3.2% (4/124), 4.1% (3/74), 2.0% (2/100), and 3.3% (4/120) from 2006 to 2011, respectively. Comprehensive detection of the four viruses revealed the presence of a high percentage (90.6%) of coinfections among HAdV-positive samples, where HAdV+RVA was the most prevalent coinfection. Of the 32 HAdV-positive samples, 50.0% (16/32) were classified as HAdV-41, and 18.8% (6/32) were classified as HAdV-3. Almost 94.0% of children infected with HAdV were less than 24 months of age. Conclusions: These results clearly indicated diversity across the HAdV genotypes detected in inpatient children with acute diarrhea in Shanghai and suggested that HAdVs play a role in children with acute diarrhea.
RESUMO
Acute respiratory tract infection is a major cause of morbidity and mortality worldwide, particularly in infants and young children. High-throughput, accurate, broad-range tools for etiologic diagnosis are critical for effective epidemic control. In this study, the diagnostic capacities of an Ibis platform based on the PCR/ESI-MS assay were evaluated using clinical samples. Nasopharyngeal aspirates (NPAs) were collected from 120 children (<5 years old) who were hospitalized with lower respiratory tract infections between November 2010 and October 2011. The respiratory virus detection assay was performed using the PCR/ESI-MS assay and the DFA. The discordant PCR/ESI-MS and DFA results were resolved with RT-PCR plus sequencing. The overall agreement for PCR/ESI-MS and DFA was 98.3% (118/120). Compared with the results from DFA, the sensitivity and specificity of the PCR/ESI-MS assay were 100% and 97.5%, respectively. The PCR/ESI-MS assay also detected more multiple virus infections and revealed more detailed subtype information than DFA. Among the 12 original specimens with discordant results between PCR/ESI-MS and DFA, 11 had confirmed PCR/ESI-MS results. Thus, the PCR/ESI-MS assay is a high-throughput, sensitive, specific and promising method to detect and subtype conventional viruses in respiratory tract infections and allows rapid identification of mixed pathogens.