Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 239(1): 102-115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36994607

RESUMO

Sporopollenin is one of the most structurally sophisticated and chemically recalcitrant biopolymers. In higher plants, sporopollenin is the dominant component of exine, the outer wall of pollen grains, and contains covalently linked phenolics that protect the male gametes from harsh environments. Although much has been learned about the biosynthesis of sporopollenin precursors in the tapetum, the nutritive cell layer surrounding developing microspores, little is known about how the biopolymer is assembled on the microspore surface. We identified SCULP1 (SKS clade universal in pollen) as a seed plant conserved clade of the multicopper oxidase family. We showed that SCULP1 in common wheat (Triticum aestivum) is specifically expressed in the microspore when sporopollenin assembly takes place, localized to the developing exine, and binds p-coumaric acid in vitro. Through genetic, biochemical, and 3D reconstruction analyses, we demonstrated that SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen viability. Moreover, we found that SCULP1 accumulation is compromised in thermosensitive genic male sterile wheat lines and its expression partially restored exine integrity and male fertility. These findings identified a key microspore protein in autonomous sporopollenin polymer assembly, thereby laying the foundation for elucidating and engineering sporopollenin biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Biopolímeros/metabolismo , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Genomics ; 17: 415, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27236332

RESUMO

BACKGROUND: Annexins are an evolutionarily conserved multigene family of calcium-dependent phospholipid binding proteins that play important roles in stress resistance and plant development. They have been relatively well characterized in model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but nothing has been reported in hexaploid bread wheat (Triticum aestivum) and barely (Hordeum vulgare), which are the two most economically important plants. RESULTS: Based on available genomic and transcriptomic data, 25 and 11 putative annexin genes were found through in silico analysis in wheat and barley, respectively. Additionally, eight and 11 annexin genes were identified from the draft genome sequences of Triticum urartu and Aegilops tauschii, progenitor for the A and D genome of wheat, respectively. By phylogenetic analysis, annexins in these four species together with other monocots and eudicots were classified into six different orthologous groups. Pi values of each of Ann1-12 genes among T. aestivum, T. urartu, A. tauschii and H. vulgare species was very low, with the exception of Ann2 and Ann5 genes. Ann2 gene has been under positive selection, but Ann6 and Ann7 have been under purifying selection among the four species in their evolutionary histories. The nucleotide diversities of Ann1-12 genes in the four species were 0.52065, 0.59239, 0.60691 and 0.53421, respectively. No selective pressure was operated on annexin genes in the same species. Gene expression patterns obtained by real-time PCR and re-analyzing the public microarray data revealed differential temporal and spatial regulation of annexin genes in wheat under different abiotic stress conditions such as salinity, drought, cold and abscisic acid. Among those genes, TaAnn10 is specifically expressed in the anther but fails to be induced by low temperature in thermosensitive genic male sterile lines, suggesting that specific down-regulation of TaAnn10 is associated with conditional male sterility in wheat. CONCLUSIONS: This study analyzed the size and composition of the annexin gene family in wheat and barley, and investigated differential tissue-specific and stress responsive expression profiles of the gene family in wheat. These results provided significant information for understanding the diverse roles of plant annexins and opened a new avenue for functional studies of cold induced male sterility in wheat.


Assuntos
Anexinas/genética , Família Multigênica , Triticum/genética , Biologia Computacional/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos/genética , Filogenia , Estresse Fisiológico/genética , Triticum/classificação
3.
Front Plant Sci ; 11: 586144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101350

RESUMO

AUXIN RESPONSE FACTOR (ARF) proteins regulate a wide range of signaling pathways, from general plant growth to abiotic stress responses. Here, we performed a genome-wide survey in wheat (Triticum aestivum) and identified 69 TaARF members that formed 24 homoeologous groups. Phylogenetic analysis clustered TaARF genes into three clades, similar to ARF genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Structural characterization suggested that ARF gene structure and domain composition are well conserved between plant species. Expression profiling revealed diverse patterns of TaARF transcript levels across a range of developmental stages, tissues, and abiotic stresses. A number of TaARF genes shared similar expression patterns and were preferentially expressed in anthers. Moreover, our systematic analysis identified three anther-specific TaARF genes (TaARF8, TaARF9, and TaARF21) whose expression was significantly altered by low temperature in thermosensitive genic male-sterile (TGMS) wheat; these TaARF genes are candidates to participate in the cold-induced male sterility pathway, and offer potential applications in TGMS wheat breeding and hybrid seed production. Moreover, we identified putative functions for a set of TaARFs involved in responses to abscisic acid and abiotic stress. Overall, this study characterized the wheat ARF gene family and generated several hypotheses for future investigation of ARF function during anther development and abiotic stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA