RESUMO
RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.
Assuntos
Proteínas do Capsídeo/genética , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Administração Intranasal , Animais , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , COVID-19 , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Vírus Defeituosos Interferentes/patogenicidade , Modelos Animais de Doenças , Genoma Viral/genética , Humanos , Influenza Humana , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/genética , Poliovirus/metabolismo , Infecções Respiratórias/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidadeRESUMO
Aquaporin-4 (AQP4) is characterized by the formation of orthogonal arrays of particles (OAPs) comprising its M1 and M23 isoforms in the plasma membrane. However, the biological importance of OAP formation is obscure. Here, we developed an OAP depolymerization male mouse model by transgenic knock-in of an AQP4-A25Q mutation. Analyses of the mutant brain tissue using blue native polyacrylamide gel electrophoresis, super-resolution imaging, and immunogold electron microscopy revealed remarkably reduced OAP structures and glial endfeet localization of the AQP4-A25Q mutant protein without effects on its overall mRNA and protein expression. AQP4A25Q/A25Q mice showed better survival and neurologic deficit scores when cerebral edema was induced by water intoxication or middle cerebral artery occlusion/reperfusion. The brain water content and swelling of pericapillary astrocytic endfeet processes in AQP4A25Q/A25Q mice were significantly reduced, functionally supporting decreased AQP4 protein expression at the blood-brain barrier. The infarct volume and neuronal damage were also reduced in AQP4A25Q/A25Q mice in the middle cerebral artery occlusion/reperfusion model. Astrocyte activation in the brain was alleviated in AQP4A25Q/A25Q mice, which may be associated with decreased cell swelling. We conclude that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.SIGNIFICANCE STATEMENT Aquaporin-4 (AQP4) is characterized by orthogonal arrays of particles (OAPs) comprising the M1 and M23 isoforms in the membrane. Here, an OAP depolymerization male mouse model induced by AQP4-A25Q mutation was first established, and the functions of OAP depolymerization in cerebral edema have been studied. The results revealed that AQP4 lost its OAP structure without affecting AQP4 mRNA and protein levels in AQP4-A25Q mice. AQP4-A25Q mutation mice has neuroprotective effects on cerebral edema induced by water intoxication and middle cerebral artery occlusion/reperfusion through relieving the activation of astrocytes and suppressed microglia-mediated neuroinflammation. We concluded that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.
Assuntos
Aquaporina 4 , Edema Encefálico , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Intoxicação por Água , Animais , Masculino , Camundongos , Aquaporina 4/genética , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Edema Encefálico/genética , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Membrana Celular/metabolismo , Edema/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fármacos Neuroprotetores/metabolismo , Mutação Puntual , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Intoxicação por Água/metabolismoRESUMO
During replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model, which enables exploring the parameter space of the WT and DI competition. We also experimentally examined virus and DI replication kinetics during co-infection, and used these data to infer model parameters. Our model identifies, and our experimental measurements confirm, that the efficiencies of DI genome replication and encapsidation are two most critical parameters determining the outcome of WT replication. However, an equilibrium can be established which enables WT to replicate, albeit to reduced levels.
Assuntos
Coinfecção/virologia , Vírus Defeituosos , Modelos Teóricos , Poliovirus , Replicação Viral/fisiologia , Vírus Defeituosos/fisiologia , Humanos , Poliovirus/fisiologiaRESUMO
HIV-1 vaccines have been challenging to develop, partly due to the high level of genetic variation in its genome. Thus, a vaccine that can induce cross-reactive neutralization activities will be needed. Studies on the co-evolution of antibodies and viruses indicate that mimicking the natural infection is likely to induce broadly neutralizing antibodies (bnAbs). We generated the consensus Env sequence for each time point in subject CH505, who developed broad neutralization activities, and selected five critical time points before broad neutralization was detected. These consensus sequences were designed to express stable Env trimers. Priming with the transmitted/founder Env timer and sequential boosting with these consensus Env trimers from different time points induced broader and more potent neutralizing activities than the BG505 Env trimer in guinea pigs. Analysis of the neutralization profiles showed that sequential immunization of Env trimers favored nAbs with gp120/gp41 interface specificity while the BG505 Env trimer favored nAbs with V2 specificity. The unique features such as consensus sequences, stable Env trimers and the sequential immunization to mimic natural infection likely has allowed the induction of improved neutralization responses.
Assuntos
Vacinas contra a AIDS , Imunização , Animais , Cobaias , Vacinação , Anticorpos , Sequência ConsensoRESUMO
Influenza virus is an acute and highly contagious respiratory pathogen that causes great concern to public health and for which there is a need for extensive drug discovery. The small chemical compound ABMA and its analog DABMA, containing an adamantane or a dimethyl-adamantane group, respectively, have been demonstrated to inhibit multiple toxins (diphtheria toxin, Clostridium difficile toxin B, Clostridium sordellii lethal toxin) and viruses (Ebola, rabies virus, HSV-2) by acting on the host's vesicle trafficking. Here, we showed that ABMA and DABMA have antiviral effects against both amantadine-sensitive influenza virus subtypes (H1N1 and H3N2), amantadine-resistant subtypes (H3N2), and influenza B virus with EC50 values ranging from 2.83 to 7.36 µM (ABMA) and 1.82 to 6.73 µM (DABMA), respectively. ABMA and DABMA inhibited the replication of influenza virus genomic RNA and protein synthesis by interfering with the entry stage of the virus. Molecular docking evaluation together with activity against amantadine-resistant influenza virus strains suggested that ABMA and DABMA were not acting as M2 ion channel blockers. Subsequently, we found that early internalized H1N1 virions were retained in accumulated late endosome compartments after ABMA treatment. Additionally, ABMA disrupted the early stages of the H1N1 life cycle or viral RNA synthesis by interfering with autophagy. ABMA and DABMA protected mice from an intranasal H1N1 challenge with an improved survival rate of 67%. The present study suggests that ABMA and DABMA are potential antiviral leads for the development of a host-directed treatment against influenza virus infection.
Assuntos
Adamantano , Vírus da Influenza A Subtipo H1N1 , Amantadina/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Autofagia , Endossomos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Camundongos , Simulação de Acoplamento Molecular , p-Dimetilaminoazobenzeno/análogos & derivadosRESUMO
Hand, foot, and mouth disease (HFMD) is a major public health concern, especially among infants and young children. The primary pathogen of HFMD is enterovirus 71 (EV71), whose capsid assembly mechanism including capsid protein processing has been widely studied. However, some of its mechanisms remain unclear, such as the VP0 cleavage. This study aimed to identify the cleavage site of the EV71 VP0 capsid protein and to elucidate the effects of EV71 VP0 cleavage on viral infectivity and assembly. A mass spectrometry analysis indicated that the cleavage site of EV71 VP0 is located between residues Lys69 and Ser70. To analyze the importance of either residue to cleavage, we designed single mutations of Lys69, Ser70 and double mutations respectively and implemented these genomes to encapsulation. The results indicated that Ser70 is more important for VP0 cleavage and EV71 infectivity. In addition, exogenous expression of EV71 protease 2A and 3C was used to verify whether they play roles in VP0 cleavage. Analyses also showed that none of them participate in this process. This study provides novel insights into the mechanisms of EV71 capsid maturation, which may be a potential target to improve the productivity and immunogenicity of EV71 vaccines.
Assuntos
Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/virologia , Clivagem do RNA/fisiologia , Montagem de Vírus , Sequência de Aminoácidos , Anticorpos Antivirais/sangue , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Células HEK293 , Humanos , Proteínas Virais/metabolismo , Vacinas ViraisRESUMO
BACKGROUND: Coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are two of the major causes of hand, foot and mouth disease (HFMD) world-wide. Although many studies have focused on infection and pathogenic mechanisms, the transcriptome profile of the host cell upon CVA16 infection is still largely unknown. RESULTS: In this study, we compared the mRNA and miRNA expression profiles of human embryonic kidney 293T cells infected and non-infected with CVA16. We highlighted that the transcription of SCARB2, a cellular receptor for both CVA16 and EV71, was up-regulated by nearly 10-fold in infected cells compared to non-infected cells. The up-regulation of SCARB2 transcription induced by CVA16 may increase the possibility of subsequent infection of CVA16/EV71, resulting in the co-infection with two viruses in a single cell. This explanation would partly account for the co-circulation and genetic recombination of a great number of EV71 and CVA16 viruses. Based on correlation analysis of miRNAs and genes, we speculated that the high expression of SCARB2 is modulated by down-regulation of miRNA has-miR-3605-5p. At the same time, we found that differentially expressed miRNA target genes were mainly reflected in the extracellular membrane (ECM)-receptor interaction and circadian rhythm pathways, which may be related to clinical symptoms of patients infected with CVA16, such as aphthous ulcers, cough, myocarditis, somnolence and potentially meningoencephalitis. The miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may result in up-regulation of genes in these morbigenous pathways related to CVA16 and further cause clinical symptoms. CONCLUSIONS: The present study elucidated the changes in 293T cells upon CVA16 infection at transcriptome level, containing highly up-regulated SCARB2 and genes in ECM-receptor interaction and circadian rhythm pathways, and key miRNAs in gene expression regulation. These results provided novel insight into the pathogenesis of HFMD induced by CVA16 infection.
Assuntos
Enterovirus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transcriptoma , Células Cultivadas , Análise por Conglomerados , Redes Reguladoras de Genes , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana Lisossomal/genética , MicroRNAs/genética , RNA Mensageiro/genética , Receptores Depuradores/genéticaRESUMO
Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea is a complex pathological process, involving ion channel regulation and water efflux. While the mechanism underlying water efflux in ETEC-induced diarrhea is still largely unknown, aquaporins (AQPs) play important roles in transcellular water movement, but their expression profile has not been demonstrated in the murine small intestine. We identified AQP3 expression in the jejunum, but not the duodenum or ileum, using reverse transcription PCR and western blotting. Immunohistochemistry showed that AQP3 localized to the jejunum villi epithelial cells. Using an ETEC-induced murine diarrhea model, we demonstrated that both AQP3 mRNA expression and protein concentration in the jejunum were gradually but significantly decreased over 7 d compared with controls. These results suggested impaired water influx also plays an important role in ETEC-induced diarrhea.
Assuntos
Aquaporina 3/metabolismo , Diarreia/microbiologia , Regulação para Baixo , Escherichia coli Enterotoxigênica/patogenicidade , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Animais , Aquaporina 3/genética , Western Blotting , Peso Corporal , Modelos Animais de Doenças , Duodeno/metabolismo , Células Epiteliais/patologia , Íleo/metabolismo , Imuno-Histoquímica , Mucosa Intestinal/patologia , Jejuno/patologia , Camundongos , Reação em Cadeia da Polimerase , RNA Mensageiro/biossíntese , Suínos , Doenças dos SuínosRESUMO
The high prevalence of herpes simplex virus 2 (HSV-2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T-cell responses to control viral infection and transmission. We designed rAd-gD2, rAd-gD2ΔUL25, and rAd-ΔUL25 to investigate whether recombinant replication-defective adenoviruses vaccine could induce specific T-cell responses and protect mice against intravaginal HSV-2 challenge compared with FI-HSV-2. In the present study, recombinant adenovirus-based HSV-2 showed higher reductions in mortality and stronger antigen-specific T-cell responses compared with FI-HSV-2 and the severity of genital lesions in mice immunized with rAd-gD2ΔUL25 was significantly decreased by eliciting IFN-γ-secreting T-cell responses compared with rAd-gD2 and rAd-ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV-2 infection following intravaginal challenge in mice.
Assuntos
Vacinas contra Adenovirus/imunologia , Proteínas do Capsídeo/imunologia , Glicoproteínas/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Adenoviridae/imunologia , Administração Intravaginal , Animais , Proteínas do Capsídeo/genética , Modelos Animais de Doenças , Feminino , Herpes Genital/imunologia , Herpes Genital/virologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB CRESUMO
This paper presents an adaptive line-of-sight (LOS) guidance method, incorporating a finite-time sideslip angle observer to achieve precise planar path tracking of a bionic robotic fish driven by LOS. First, an adaptive LOS guidance method based on real-time cross-track error is presented. To mitigate the adverse effects of the sideslip angle on tracking performance, a finite-time observer (FTO) based on finite-time convergence theory is employed to observe the time-varying sideslip angle and correct the target yaw. Subsequently, classical proportional-integral-derivative (PID) controllers are utilized to achieve yaw tracking, followed by static and dynamic yaw angle experiments for evaluation. Finally, the yaw-tracking-based path-tracking control strategy is applied to the robotic fish, whose motion is generated by an improved central pattern generator (CPG) and equipped with a six-axis inertial measurement unit for real-time swimming direction. Quantitative comparisons in tank experiments validate the effectiveness of the proposed method.
RESUMO
Rabies is a lethal zoonotic disease that threatens human health. As the only viral surface protein, the rabies virus (RABV) glycoprotein (G) induces main neutralizing antibody (Nab) responses; however, Nab titre is closely correlated with the conformation of G. Virus-like particles (VLP) formed by the co-expression of RABV G and matrix protein (M) improve retention and antigen presentation, inducing broad, durable immune responses. RABV nucleoprotein (N) can elicit humoral and cellular immune responses. Hence, we developed a series of nucleoside-modified RABV mRNA vaccines encoding wild-type G, soluble trimeric RABV G formed by an artificial trimer motif (tG-MTQ), membrane-anchored prefusion-stabilized G (preG). Furthermore, we also developed RABV VLP mRNA vaccine co-expressing preG and M to generate VLPs, and VLP/N mRNA vaccine co-expressing preG, M, and N. The RABV mRNA vaccines induced higher humoral and cellular responses than inactivated rabies vaccine, and completely protected mice against intracerebral challenge. Additionally, the IgG and Nab titres in RABV preG, VLP and VLP/N mRNA groups were significantly higher than those in G and tG-MTQ groups. A single administration of VLP or VLP/N mRNA vaccines elicited protective Nab responses, the Nab titres were significantly higher than that in inactivated rabies vaccine group at day 7. Moreover, RABV VLP and VLP/N mRNA vaccines showed superior capacities to elicit potent germinal centre, long-lived plasma cell and memory B cell responses, which linked to high titre and durable Nab responses. In summary, our data demonstrated that RABV VLP and VLP/N mRNA vaccines could be promising candidates against rabies.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Imunidade Celular , Imunidade Humoral , Vacina Antirrábica , Vírus da Raiva , Raiva , Vacinas de Partículas Semelhantes a Vírus , Animais , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Raiva/prevenção & controle , Raiva/imunologia , Vírus da Raiva/imunologia , Vírus da Raiva/genética , Camundongos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Feminino , Vacinas de mRNA/imunologia , Camundongos Endogâmicos BALB C , Nucleosídeos/imunologia , Glicoproteínas/imunologia , Glicoproteínas/genética , Humanos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Antígenos Virais/imunologia , Antígenos Virais/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologiaRESUMO
Purpose: Tick-borne encephalitis virus (TBEV) infections result in severe central nervous system diseases in humans across Asia and Europe. In China, cases of tick-borne encephalitis are primarily caused by the Far East subtype of TBEV, which exhibits a distinct disease course compared to other extensively studied subtypes. However, there is limited knowledge regarding the nucleic acid and serological diagnostic characteristics of patients infected with the TBEV in China, which is the focus of investigation in the present study. Methods: This study established a TaqMan qPCR approach to detect TBEV RNA in the serum with optimal specificity, sensitivity, and precision. Using TaqMan qPCR and ELISA assay for TBEV IgM detection, serum samples from 63 hospitalized patients bitten by ticks in Northeast China were investigated for diagnostic characteristics. Results: Twenty-five patients were positive for viral RNA; nineteen patients were positive for IgM, and nine were positive for both viral RNA and IgM. Through comparative analysis, TBEV RNA copies were negatively correlated with the virus incubation period. IgM levels were positively correlated with the clinical symptom scores of patients. The severity of clinical symptoms and the length after the tick bite could be used to predict the IgM occurrence. Furthermore, IgM levels and viral RNA copies were not correlated in double-positive patients. Conclusion: Both nucleic acid and serological detection methods exhibited distinct windows for detecting TBEV infection, with some overlap, and were associated with specific correlated factors. This study provided novel insights into the diagnosis and course of TBEV-induced tick-borne encephalitis in China.
RESUMO
BACKGROUND: Granulosa cells play a key role in folliculogenesis and female reproduction. Our previous study demonstrated that water channel aquaporin-8 (AQP8) is expressed in mouse follicular granulosa cells and is an important determinant of granulosa cell apoptosis and follicular maturation. More roles of AQP8 in folliculogenesis remain to be determined. FINDINGS: The present study reports the increased occurrence of multi-oocyte follicles (MOFs) in ovaries of AQP8 knockout mice. The MOFs in AQP8-deficient ovaries contained two or three oocytes, and distributed at various follicle stages including primary (12.5%), secondary (50%), antral (18.8%) and atretic (18.8%) follicles in 5-week ovaries. The MOF is occasionally seen in wild-type ovary only in primary and secondary follicles. The number of MOFs in AQP8-deficient ovary reduced with age (26.7 +/- 5.2 per ovary at 5 weeks old, 14 +/- 5.5 at 10 weeks old, and 3.3 +/- 5.1 at 20 weeks old). mRNA expression of AQP5, AQP7, AQP8, AQP11 and AQP12 was detected in neonatal mouse ovaries and in granulosa cells in 4 week old mouse ovaries. The expression of AQP7, AQP11 and AQP12 mRNAs are decreased significantly in neonatal AQP8-deficient ovaries, whereas AQP5 mRNA expression remains unchanged. CONCLUSIONS: The emergence of MOFs is associated with AQP8 deficiency. The study suggested the involvement of AQP8 in the formation of follicles and provided new insight into the molecular mechanisms of folliculogenesis.
Assuntos
Aquaporinas/genética , Oócitos/patologia , Folículo Ovariano/patologia , Animais , Permeabilidade da Membrana Celular/genética , Feminino , Células da Granulosa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Folículo Ovariano/crescimento & desenvolvimento , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Human enterovirus type 71 (EV71) and Coxsackievirus A group type 16 (CA16) belong to human Enterovirus species A of the family Picornaviridae. These viruses are recognized as the major pathogens responsible for epidemics of hand-foot-mouth disease (HFMD), which presents with fever and vesicular eruptions of palms, soles of the feet or mouth. Human scavenger receptor class B, member 2 (SCARB2) has been identified as the receptor for both EV71 and CA16, as overexpression of SCARB2 in cells can enhance virus replication significantly. METHODS: In this study, we used a lentivirus packaging vector to transduce the SCARB2 gene into human embryonic kidney cells (293), human rhabdomyosarcoma cells (RD) and African green monkey kidney cells (Vero) to create stable expression lines. Expression of SCARB2 in the resulting three transgenic cell lines was confirmed by real-time RT-PCR, immunofluorescence and flow cytometry. RESULTS: Levels of SCARB2 mRNA determined by real-time RT-PCR in 293-SCARB2 (293S) or RD-SCARB2 (RDS) transgenic cell lines were approximately 2 × 10(2) times higher than those in 293 and RD cells, respectively, and three times higher in Vero-SCARB2 (VeroS) than in Vero cells. Furthermore, EV71 and CA16 virus titers in 293S and RDS cells were 10(2)-10(3)-fold higher (detected in RD cell) than those in the parental cells, and a 10-fold higher titer of EV71 was achieved in VeroS cells compared with that in Vero cells. CONCLUSIONS: We established for the first time three cell lines stably overexpressing SCARB2, which showed drastic increases in susceptibility to EV71/CA16 infection. These optimal cell lines may be utilized to develop inactivated vaccines for EV71/CA16 and facilitate rapid detection and isolation of HFMD pathogens or other Enterovirus serotypes. Furthermore, these stable cell lines also can serve as tools to facilitate drug screenings as well as molecular studies on virus-host interactions and pathogenesis of causative agents for HFMD.
Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus/crescimento & desenvolvimento , Expressão Gênica , Proteínas de Membrana Lisossomal/biossíntese , Receptores Depuradores/biossíntese , Receptores Virais/biossíntese , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Receptores Virais/genética , Transdução Genética , Cultura de Vírus/métodosRESUMO
Efficient manufacture of recombinant adeno-associated virus (rAAV) vectors for gene therapy remains challenging. Packaging cell lines containing stable integration of the AAV rep/cap genes have been explored, however rAAV production needs to be induced using wild-type adenoviruses to promote episomal amplification of the integrated rep/cap genes by mobilizing a cis-acting replication element (CARE). The adenovirus proteins responsible are not fully defined, and using adenovirus during rAAV manufacture leads to contamination of the rAAV preparation. 'TESSA' is a helper adenovirus with a self-repressing Major Late Promoter (MLP). Its helper functions enable efficient rAAV manufacture when the rep and cap genes are provided in trans but is unable to support rAAV production from stable packaging cells. Using rAAV-packaging cell line HeLaRC32, we show that expression of the adenovirus L4 22/33K unit is essential for rep/cap amplification but the proteins are titrated away by binding to replicating adenovirus genomes. siRNA-knockdown of the adenovirus DNA polymerase or the use of a thermosensitive TESSA mutant decreased adenovirus genome replication whilst maintaining MLP repression, thereby recovering rep/cap amplification and efficient rAAV manufacture. Our findings have direct implications for engineering more efficient adenovirus helpers and superior rAAV packaging/producer cells.
Assuntos
Adenoviridae , Proteínas Virais , Humanos , Transfecção , Células HeLa , Plasmídeos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Replicação Viral/genéticaRESUMO
Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.
Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Herpes Genital , Vacinas contra o Vírus do Herpes Simples , Cobaias , Animais , Herpesvirus Humano 2/genética , Adenoviridae/genética , Proteínas do Envelope Viral/genética , Herpes Genital/prevenção & controle , Vacinas Sintéticas/genética , Anticorpos AntiviraisRESUMO
Genital herpes caused by herpes simplex virus type 2 (HSV-2) poses a global health issue. HSV-2 infection increases the risk of acquiring HIV infection. Studies have demonstrated that HSV-2 subunit vaccines have potential benefits, but require adjuvants to induce a balanced Th1/Th2 response. To develop a novel, effective vaccine, in this study, a truncated glycoprotein D (aa 1-285) of HSV-2 was formulated with an Al(OH)3 adjuvant, three squalene adjuvants, zMF59, zAS03, and zAS02, or a mucosal adjuvant, bacterium-like particles (BLPs). The immunogenicity of these subunit vaccines was evaluated in mice. After three immunizations, vaccines formulated with Al(OH)3, zMF59, zAS03, and zAS02 (intramuscularly) induced higher titers of neutralizing antibody than that formulated without adjuvant, and in particular, mice immunized with the vaccine plus zAS02 had the highest neutralizing antibody titers and tended to produce a more balanced immune reaction than others. Intranasal gD2-PA-BLPs also induced excellent IgA levels and a more balanced Th1 and Th2 responses than intranasal gD2. After challenge with a lethal dose of HSV-2, all five adjuvants exhibited a positive effect in improving the survival rate. zAS02 and gD2-PA-BLPs enhanced survival by 50% and 25%, respectively, when compared with the vaccine without adjuvant. zAS02 was the only adjuvant that resulted in complete vaginal virus clearance and genital lesion healing within eight days. These results demonstrate the potential of using zAS02 as a subunit vaccine adjuvant, and BLPs as a mucosal vaccine adjuvant.
Assuntos
Infecções por HIV , Herpes Genital , Feminino , Animais , Camundongos , Herpesvirus Humano 2/fisiologia , Adjuvantes de Vacinas , Anticorpos Antivirais , Proteínas do Envelope Viral , Herpes Genital/prevenção & controle , Anticorpos Neutralizantes , Adjuvantes Imunológicos , Imunização , Vacinas de Subunidades AntigênicasRESUMO
Cold adapted live attenuated influenza vaccines can effectively prevent human disease and death caused by influenza virus. Since chicken embryos are used as the culture substrate for the large-scale production of influenza vaccines, cold adapted live attenuated influenza vaccines may be contaminated by exogenous avian viruses. Rapid and sensitive methods such as TaqMan-based quantitative PCR are needed for the detection of exogenous avian viruses during cold adapted live attenuated influenza vaccines production. In this study, a TaqMan-based quantitative PCR method was established for the detection of three common exogenous avian viruses, including fowl adenovirus type I, type â ¢ and avian leukosis virus. Avian virus-encoding plasmids purified in high-performance liquid chromatography were essential for sensitivity analysis. The sensitivity reached 1 copy per reaction for each of the avian virus plasmids. Standard curves showed a strong linear relationship. The TaqMan-based quantitative PCR method had high specificity and no cross-reactivity with other irrelevant viruses. Furthermore, the established TaqMan-based quantitative PCR can effectively detect 0.1 TCID50 of each avian virus without or with interference from the influenza virus nucleic acid. Ultimately, this method was used to test three master seed lots of monovalent cold adapted live attenuated influenza vaccine, and the results showed that no fowl adenovirus type I, type â ¢ or avian leukosis virus contamination, which were consistent with serological methods. The TaqMan-based quantitative PCR method for the determination of extraneous avian viruses in cold adapted live attenuated influenza vaccines met the requirement for both conventional and emergency inspection on cold adapted live attenuated influenza vaccines.
RESUMO
Defective interfering particles (DIPs) are particles containing defective viral genomes (DVGs) generated during viral replication. DIPs have been found in various RNA viruses, especially in influenza viruses. Evidence indicates that DIPs interfere with the replication and encapsulation of wild-type viruses, namely standard viruses (STVs) that contain full-length viral genomes. DIPs may also activate the innate immune response by stimulating interferon synthesis. In this review, the underlying generation mechanisms and characteristics of influenza virus DIPs are summarized. We also discuss the potential impact of DIPs on the immunogenicity of live attenuated influenza vaccines (LAIVs) and development of influenza vaccines based on NS1 gene-defective DIPs. Finally, we review the antiviral strategies based on influenza virus DIPs that have been used against both influenza virus and SARS-CoV-2. This review provides systematic insights into the theory and application of influenza virus DIPs.
Assuntos
COVID-19 , Vacinas contra Influenza , Orthomyxoviridae , Humanos , Antivirais , Vírus Defeituosos Interferentes , Vírus Defeituosos/fisiologia , SARS-CoV-2 , Orthomyxoviridae/genética , Replicação Viral/genéticaRESUMO
Recombinant adeno-associated virus (rAAV) shows great promise for gene therapy, however scalability, yield and quality remain significant issues. Here we describe an rAAV manufacturing strategy using a 'helper' adenovirus that self-inhibits its major late promoter (MLP) to truncate its own replication. Inserting a tetracycline repressor (TetR) binding site into the MLP and encoding the TetR under its transcriptional control allowed normal adenovirus replication in the presence of doxycycline but only genome amplification and early gene expression (the 'helper' functions) in its absence. Using this self-inhibiting adenovirus we demonstrate delivery of adenoviral helper functions, AAV rep and cap genes, and the rAAV genome to yield up to 30-fold more rAAV vectors compared to the helper-free plasmid approach and significant improvements in particle infectivity for a range of serotypes. This system allows significant improvements in the production of serotypes rAAV2, rAAV6, rAAV8 and rAAV9, and enables propagation of existing rAAV without transfection, a process that improves batch quality by depleting reverse packaged DNA contaminants. We propose this as a high-yielding, contaminant-free system suitable for scalable rAAV manufacture.