Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 38(1): 50-57, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10384009

RESUMO

> Abstract Decomposition of standing litter of the emergent macrophyte Erianthus giganteus (plumegrass) was quantified in a small freshwater wetland in Alabama, USA. Living green shoots of E. giganteus were tagged and periodically retrieved for determination of leaf and culm mass loss, litter-associated fungal biomass (ergosterol), and nitrogen and phosphorus concentrations. Laboratory studies were also conducted to examine the effects of plant litter moisture content and temperature on rates of CO2 evolution from plant litter. Culm and leaf material lost 25 and 32% AFDM, respectively, during plant senescence and early litter decay. Fungal biomass, as determined by ergosterol concentrations, increased significantly in both leaf and culm litter during decomposition, with maximum biomass accounting for 3.7 and 6.7% of the total detrital weight in culm and leaf litter, respectively. Spatial differences in fungal biomass were observed along the culm axis, with upper regions of the culm accumulating significantly greater amounts of fungal mass than basal regions (p < 0.01, ANOVA). Rates of CO2 evolution from both leaf and culm litter increased rapidly after wetting (0 to 76 µg CO2-C g-1 AFDM h-1 within 5 min). In addition, rates of CO2 evolution from water saturated culms increased exponentially as the temperature was increased from 10 to 30 degrees C. These results provide evidence that considerable microbial colonization and mineralization of standing emergent macrophyte litter can occur before collapse of senescent shoot material to the water and sediment surface.http://link.springer-ny.com/link/service/journals/00248/bibs/38n1p50.html

2.
Oecologia ; 79(1): 30-37, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28312809

RESUMO

Laboratory experiments were conducted to examine the effects of fungal species composition of leaf detritus on the feeding of distantly related macroinvertebrate shredders. Preferences of shredders representing three orders of insects (Diptera: Tipulidae; Plecoptera: Pteronarcidae; Trichoptera: Limnephilidae and Calamatoceridae) and one each of gastropods (Basommatophora: Planorbidae) and crustaceans (Amphipoda: Gammaridae) were compared. Shredder preferences were based on consumption of leaves separately colonized by one of eight species of aquatic hyphomycetes. The feeding patterns of the invertebrates ranged from lack of feeding to heavy consumption of fungal-colonized leaves. Where consumption occurred, rank orders of preference and degree of selectivity differed among invertebrate shredders. Differences in preferences together with relationships between degree of selectivity and the relative mobility and digestive specializations exhibited by shredders suggest that the exploitation of fungal-colonized leaf detritus by different taxa is affected by phylogenetic constraints. Our results suggest that fungal species composition affects the feeding of a variety of shredders and that fungal species composition may be as important as degree of conditioning in determining food selection by shredders.

3.
Appl Environ Microbiol ; 67(11): 5063-8, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11679327

RESUMO

I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hard water stream [pH 8.0] and a soft water stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 microg liter(-1)) and phosphorus (<3 microg liter(-1)). The leaves of each species decomposed faster in the hard water stream (decomposition rates, 0.010 and 0.007 day(-1) for yellow poplar and oak, respectively) than in the soft water stream (decomposition rates, 0.005 and 0.004 day(-1) for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [(14)C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hard water stream but not in the soft water stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hard water stream (5.8 mg g(-1) day(-1) on yellow poplar leaves and 3.1 mg g(-1) day(-1) on oak leaves) than in the soft water stream (1.6 mg g(-1) day(-1) on yellow poplar leaves and 0.9 mg g(-1) day(-1) on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the soft water stream (12.8% of detrital mass) than in the hard water stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the soft water stream.


Assuntos
Água Doce/química , Fungos/crescimento & desenvolvimento , Fungos/fisiologia , Magnoliopsida/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Quercus/microbiologia , Biomassa , Ergosterol/metabolismo , Concentração de Íons de Hidrogênio , Esporos Fúngicos/fisiologia , Árvores/microbiologia
4.
Microb Ecol ; 45(1): 11-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12447584

RESUMO

The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then incubated in laboratory microcosms at two levels of nutrients. Patterns of carbon flow for leaf disks colonized with the full microbial assemblage were compared with those colonized by bacteria but in which fungi were greatly reduced by placing leaf disks in colonization chambers sealed with membrane filters to exclude aquatic hyphomycete conidia but not bacterial cells. On leaves colonized by the full microbial assemblage, elevated nutrient concentrations stimulated fungi and bacteria to a similar degree. Peak fungal and bacterial biomass increased by factors of 3.9 and 4.0; cumulative production was 3.9 and 5.1 times higher in the high nutrient in comparison with the low nutrient treatment, respectively. Fungi dominated the total microbial biomass (98.4 to 99.8%) and cumulative production (97.3 and 96.5%), and the fungal yield coefficient exceeded that of bacteria by a factor of 36 and 27 in low- and high-nutrient treatments, respectively. Consequently, the dominant role of fungi in leaf decomposition did not change as a result of nutrient manipulation. Carbon budgets indicated that 8% of leaf carbon loss in the low-nutrient treatment and 17% in the high-nutrient treatment were channeled to microbial (essentially fungal) production. Nutrient enrichment had a positive effect on rate of leaf decomposition only in microcosms with full microbial assemblages. In treatments where fungal colonization was reduced, cumulative bacterial production did not change significantly at either nutrient level and leaf decomposition rate was negatively affected (high nutrients), suggesting that bacterial participation in carbon flow from decaying leaf litter is low regardless of the presence of fungi and nutrient availability. Moreover, 1.5 and 2.3 times higher yield coefficients of bacteria in the reduced fungal treatments at low and high nutrients, respectively (percentage of leaf carbon loss channeled to bacterial production), suggest that bacteria are subjected to strong competition with fungi for resources available in leaf litter.


Assuntos
Bactérias , Carbono/metabolismo , Fungos , Folhas de Planta/metabolismo , Biodegradação Ambiental , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Dinâmica Populacional , Microbiologia do Solo
5.
Appl Environ Microbiol ; 62(5): 1610-5, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-16535312

RESUMO

As leaves enter woodland streams, they are colonized by both fungi and bacteria. To determine the contribution of each of these microbial groups to the decomposition process, comparisons of fungal and bacterial production are needed. Recently, a new method for estimating fungal production based on rates of [(sup14)C]acetate incorporation into ergosterol was described. Bacterial production in environmental samples has been determined from rates of [(sup3)H]leucine incorporation into protein. In this study, we evaluated conditions necessary to use these methods for estimating fungal and bacterial production associated with leaves decomposing in a stream. During incubation of leaf disks with radiolabeled substrates, aeration increased rates of fungal incorporation but decreased bacterial production. Incorporation of both radiolabeled substrates by microorganisms associated with leaf litter was linear over the time periods examined (2 h for bacteria and 4 h for fungi). Incorporation of radiolabeled substrates present at different concentrations indicated that 400 nM leucine and 5 mM acetate maximized uptake for bacteria and fungi, respectively. Growth rates and rates of acetate incorporation into ergosterol followed similar patterns when fungi were grown on leaf disks in the laboratory. Three species of stream fungi exhibited similar ratios of rates of biomass increase to rates of acetate incorporation into ergosterol, with a mean of 19.3 (mu)g of biomass per nmol of acetate incorporated. Both bacterial and fungal production increased exponentially with increasing temperature. In the stream that we examined, fungal carbon production was 11 to 26 times greater than bacterial carbon production on leaves colonized for 21 days.

6.
Appl Environ Microbiol ; 64(4): 1522-5, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16349551

RESUMO

Temperature appears to be an important factor affecting the occurrence and distribution of aquatic hyphomycetes, the dominant leaf litter-decomposing fungi in streams. We compared conidium production by eight species of aquatic hyphomycetes grown on yellow poplar leaves in stream-simulating microcosms at three temperatures (15, 20, and 25 degrees C). The greatest conidium production occurred at 15 degrees C for one species, 20 degrees C for two species, and 25 degrees C for two species. Two species produced similar numbers of conidia at 20 and 25 degrees C, and one species produced similar numbers of conidia at all three temperatures. Linear growth rates were determined on malt extract agar. Six species had the same pattern of temperature responses for growth on malt extract agar as for sporulation on leaves, as shown by the positive correlations between the two parameters at the three temperatures. The species examined also exhibited differences in number of conidia produced from a similar amount of leaf material at a given temperature. These differences appeared to be due primarily to differences in individual conidium mass (determined by weighing conidia produced from cultures), as shown by the relationship of the type Y = k/X (r = 0.96), where Y is the number of conidia produced, X is the individual conidium mass in milligrams, and k is a constant empirically determined to be 2.11. This finding supports the hypothesis that aquatic hyphomycetes allocate similar amounts of their resources to reproduction but vary with respect how these resources are partitioned into reproductive units (conidia).

7.
Microb Ecol ; 1(1): 96-103, 1974 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24241021

RESUMO

Microorganisms associated with decomposing deciduous leaf litter in a woodland stream were examined by scanning electron microscopy. The use of a critical point drying method allowed the preservation of a wide variety of microorganisms as well as the decomposing litter with a minimum of distortion. The micrographs provide evidence that the aquatic hyphomycetes are the major fungal flora present during decomposition. Two distinct groups of these fungi were found during the seasonal cycle with one group occurring only in the summer while the other occurred throughout the rest of the year. The presence of all developmental stages of these organisms in the environment is considered further evidence of their active role in the decomposition of litter.

8.
Appl Environ Microbiol ; 64(2): 607-12, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16349503

RESUMO

Standing litter of emergent macrophytes often forms a major portion of the detrital mass in wetland habitats. Microbial assemblages inhabiting this detritus must adapt physiologically to daily fluctuations in temperature and water availability. We examined the effects of various environmental conditions on the concentrations of osmoregulatory solutes (polyols and trehalose) and the respiratory activities of fungal assemblages inhabiting standing litter of the freshwater emergent macrophyte Juncus effusus. Under field conditions, the concentrations of osmolytes (polyols plus trehalose) in fungal decomposers were negatively correlated with plant litter water potentials (r = -0.75, P < 0.001) and rates of microbial respiration (r = -0.66, P < 0.001). The highest concentration of osmolytes (polyols plus trehalose) occurred in standing litter exposed to desiccating conditions (range from wet to dry, 0.06 to 0.68 mumol . mg of fungal biomass). Similar fluctuations in polyol and trehalose concentrations were observed in standing litter wetted and dried under laboratory conditions and for four predominant fungal decomposers of J. effusus grown individually on sterilized Juncus leaves. These studies suggest that fungal inhabitants associated with standing litter of emergent macrophytes can adjust their intracellular solute concentrations in response to daily fluctuations in water availability.

9.
Appl Environ Microbiol ; 59(10): 3367-72, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16349069

RESUMO

ATP and ergosterol were compared as indicators of fungal biomass associated with leaves decomposing in laboratory microcosms and streams. In all studies, the sporulation rates of the fungi colonizing leaves were also determined to compare patterns of fungal reproductive activity with patterns of mycelial growth. During leaf degradation, ATP concentrations exhibited significant, positive correlations with ergosterol concentrations in the laboratory and when leaves had been air dried prior to being submerged in a stream. However, when freshly shed leaves were submerged in a stream, concentrations of ATP and ergosterol were negatively correlated during degradation. This appeared to be due to the persistence of leaf-derived ATP in freshly shed leaves during the first 1 to 2 weeks in the stream. Estimates of fungal biomass from ergosterol concentrations of leaf litter were one to three times those calculated from ATP concentrations. ATP, ergosterol, and sporulation data generally provided similar information about the fungi associated with decomposing leaves in streams during periods when fungi were growing. Ergosterol concentrations provide a more accurate indication of fungal biomass in situations in which other organisms make significant contributions to ATP pools.

10.
Appl Environ Microbiol ; 46(1): 237-44, 1983 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16346343

RESUMO

Stream fungi have the capacity to degrade leaf litter and, through their activities, to transform it into a more palatable food source for invertebrate detritivores. The objectives of the present study were to characterize various aspects of fungal modification of the leaf substrate and to examine the effects these changes have on leaf palatability to detritivores. Fungal species were grown on aspen leaves for two incubation times. Leaves were analyzed to determine the weight loss, the degree of softening of the leaf matrix, and the concentrations of ATP and nitrogen associated with leaves. The activities of a protease and 10 polysaccharide-degrading enzymes produced by each fungus were also determined. Most fungi caused similar changes in physicochemical characteristics of the leaves. All fungi exhibited the capability to depolymerize pectin, xylan, and cellulose. Differences among fungi were found in their capabilities to produce protease and certain glycosidases. Leaf palatability was assessed by offering leaves of all treatments to larvae of two caddisfly shredders (Trichoptera). Feeding preferences exhibited by the shredders were similar and indicated that they perceived distinct differences among fungi. Two fungal species were highly consumed, some moderately and others only slightly. No relationships were found between any of the fungal characteristics measured and detritivore feeding preferences. Apparently, interspecific differences among fungi other than parameters associated with biomass or degradation of structural polysaccharides influence fungal palatability to caddisfly detritivores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA