Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 228(5): 555-563, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37062677

RESUMO

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Antivirais , Saccharomyces cerevisiae , Anticorpos Neutralizantes/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais/uso terapêutico
2.
Sci Rep ; 12(1): 21299, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494565

RESUMO

The use of benzyl trichloroacetimidates for the benzylation of phosphonic acid nerve agent markers under neutral, basic, and slightly acidic conditions is presented. The benzyl-derived phosphonic acids were detected and analyzed by Electron Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS). The phosphonic acids used in this work included ethyl-, cyclohexyl- and pinacolyl methylphosphonic acid, first pass hydrolysis products from the nerve agents ethyl N-2-diisopropylaminoethyl methylphosphonothiolate (VX), cyclosarin (GF) and soman (GD) respectively. Optimization of reaction parameters for the benzylation included reaction time and solvent, temperature and the effect of the absence or presence of catalytic acid. The optimized conditions for the derivatization of the phosphonic acids specifically for their benzylation, included neutral as well as catalytic acid (< 5 mol%) and benzyl 2,2,2-trichloroacetimidate in excess coupled to heating the mixture to 60 °C in acetonitrile for 4 h. While the neutral conditions for the method proved to be efficient for the preparation of the p-methoxybenzyl esters of the phosphonic acids, the acid-catalyzed process appeared to provide much lower yields of the products relative to its benzyl counterpart. The method's efficiency was tested in the successful derivatization and identification of pinacolyl methylphosphonic acid (PMPA) as its benzyl ester when present at a concentration of ~ 5 µg/g in a soil matrix featured in the Organisation for the Prohibition of Chemical Weapons (OPCW) 44th proficiency test (PT). Additionally, the protocol was used in the detection and identification of PMPA when spiked at ~ 10 µg/mL concentration in a fatty acid-rich liquid matrix featured during the 38th OPCW-PT. The benzyl derivative of PMPA was partially corroborated with the instrument's internal NIST spectral library and the OPCW central analytical database (OCAD v.21_2019) but unambiguously identified through comparison with a synthesized authentic standard. The method's MDL (LOD) values for the benzyl and the p-methoxybenzyl pinacolyl methylphosphonic acids were determined to be 35 and 63 ng/mL respectively, while the method's Limit of Quantitation (LOQ) was determined to be 104 and 189 ng/mL respectively in the OPCW-PT soil matrix evaluated.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Agentes Neurotóxicos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Fosforosos/química , Elétrons , Solo/química , Substâncias para a Guerra Química/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA