Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 14(9): 3025-3035, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28763236

RESUMO

Fusion of therapeutic proteins with the antibody Fc domain is a strategy widely applied to increase protein half-life in plasma. In our previous study, we generated a recombinant human lactoferrin (hLF)-immunoglobulin G1 Fc fusion protein (hLF-hinge-CH2-CH3) with improved stability, biological activity, and pharmacokinetics ( Shiga , Y. et al. Eur J Pharm Sci. , 2015 , 67 , 136 - -143 ). However, the Fc domain in fusion proteins can potentially induce antibody-dependent and complement-dependent cytotoxicity and serious side effects. To overcome these drawbacks, we engineered an hLF-Fc fusion protein (hLF-CH2-CH3) without the Fc hinge region which is essential for engaging Fc receptors on immune cells and inducing complement-mediated cell lysis. The hLF-CH2-CH3 protein was stably expressed in Chinese hamster ovary (CHO) DG44 cells and compared for in vitro activities, thermal stability, pharmacokinetics, and attenuation of Fc-mediated immune effector functions with the conventional hinge-containing Fc fusion protein. Both hLF-hinge-CH2-CH3 and hLF-CH2-CH3 exhibited iron-binding activity, superior uptake by Caco-2 cells, similar thermal stability, and longer plasma half-life compared to recombinant hLF. However, in contrast to conventional hLF-hinge-CH2-CH3, hinge-deficient hLF-CH2-CH3 did not elicit Fc-mediated effector response potentially damaging for the target cells. Our findings demonstrate that conjugation of hinge-deficient Fc to therapeutic proteins is a promising strategy for improving their pharmacokinetic properties without enhancing effector functions. Cell-expressed hinge-deficient hLF-CH2-CH3 is a potential drug candidate with improved plasma half-life for parenteral administration.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Lactoferrina/metabolismo , Animais , Células CHO , Células CACO-2 , Cromatografia em Gel , Dicroísmo Circular , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Lactoferrina/genética , Ligação Proteica
2.
Eur J Pharm Sci ; 67: 136-143, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25433245

RESUMO

Lactoferrin (LF), an 80-kDa iron-binding glycoprotein found in mammalian exocrine secretions, has potential therapeutic efficacy due to its extensive health-promoting effects. However, LF is rapidly cleared from the circulation (∼12.6min half-life for recombinant human LF [rhLF] in rats), which limits its therapeutic potential. Therefore, to improve plasma stability, we developed a recombinant human LF (hLF)-immunoglobulin G1 (IgG1) fragment crystallizable domain (Fc) fusion (hLF-hinge-CH2-CH3) expressed in a Chinese Hamster Ovary cell (CHO) expression system and evaluated the in vitro bioactivities and pharmacokinetic properties of the purified fusion. CHO DG44 cells were transfected with an expression vector coding for recombinant hLF-hinge-CH2-CH3. Iron binding, Caco-2 uptake, and thermal stability were investigated in vitro, and pharmacokinetic parameters were investigated in vivo. hLF-hinge-CH2-CH3 was significantly expressed in CHO cells (∼100mg/l culture), was readily purified, and exhibited 98.3% of the non-fused rhLF iron-binding activity. Caco-2 uptake and thermal stability were improved for hLF-Fc fusion relative to rhLF. Moreover, hLF-hinge-CH2-CH3 demonstrated a plasma half-life that was 9.1-fold longer than that of rhLF as well as longer than that of the PEGylated bovine LFs that we previously developed. Thus, CHO-derived hLF-hinge-CH2-CH3, with enhanced pharmacokinetic properties, is a promising candidate drug for potential parenteral administration.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Lactoferrina , Proteínas Recombinantes de Fusão , Animais , Células CHO , Células CACO-2 , Cricetulus , Humanos , Fragmentos Fc das Imunoglobulinas/sangue , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Absorção Intestinal , Ferro/metabolismo , Lactoferrina/sangue , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/farmacocinética , Masculino , Ratos Wistar , Proteínas Recombinantes de Fusão/sangue , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA