Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 573(7774): 439-444, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485072

RESUMO

Metastasis is the major driver of death in patients with cancer. Invasion of surrounding tissues and metastasis have been proposed to initiate following loss of the intercellular adhesion protein, E-cadherin1,2, on the basis of inverse correlations between in vitro migration and E-cadherin levels3. However, this hypothesis is inconsistent with the observation that most breast cancers are invasive ductal carcinomas and express E-cadherin in primary tumours and metastases4. To resolve this discrepancy, we tested the genetic requirement for E-cadherin in metastasis using mouse and human models of both luminal and basal invasive ductal carcinomas. Here we show that E-cadherin promotes metastasis in diverse models of invasive ductal carcinomas. While loss of E-cadherin increased invasion, it also reduced cancer cell proliferation and survival, circulating tumour cell number, seeding of cancer cells in distant organs and metastasis outgrowth. Transcriptionally, loss of E-cadherin was associated with upregulation of genes involved in transforming growth factor-ß (TGFß), reactive oxygen species and apoptosis signalling pathways. At the cellular level, disseminating E-cadherin-negative cells exhibited nuclear enrichment of SMAD2/3, oxidative stress and increased apoptosis. Colony formation of E-cadherin-negative cells was rescued by inhibition of TGFß-receptor signalling, reactive oxygen accumulation or apoptosis. Our results reveal that E-cadherin acts as a survival factor in invasive ductal carcinomas during the detachment, systemic dissemination and seeding phases of metastasis by limiting reactive oxygen-mediated apoptosis. Identifying molecular strategies to inhibit E-cadherin-mediated survival in metastatic breast cancer cells may have potential as a therapeutic approach for breast cancer.


Assuntos
Antígenos CD , Neoplasias da Mama/patologia , Caderinas , Carcinoma Ductal de Mama/patologia , Invasividade Neoplásica , Metástase Neoplásica , Animais , Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Feminino , Humanos , Camundongos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110402

RESUMO

Among eutherian (placental) mammals, placental embedding into the maternal endometrium exhibits great differences, from being deeply invasive (e.g., humans) to noninvasive (e.g., cattle). The degree of invasion of placental trophoblasts is positively correlated with the rate of cancer malignancy. Previously, we have shown that fibroblasts from different species offer different levels of resistance to the invading trophoblasts as well as to cancer cell invasion. Here we present a comparative genomic investigation revealing cis-regulatory elements underlying these interspecies differences in invasibility. We identify transcription factors that regulate proinvasibility and antiinvasibility genes in stromal cells. Using an in vitro invasibility assay combined with CRISPR-Cas9 gene knockout, we found that the transcription factors GATA2 and TFDP1 strongly influence the invasibility of endometrial and skin fibroblasts. This work identifies genomic mechanisms explaining species differences in stromal invasibility, paving the way to therapies targeting stromal characteristics to regulate placental invasion, wound healing, and cancer dissemination.


Assuntos
Endométrio/metabolismo , Trofoblastos/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Endométrio/patologia , Feminino , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Técnicas de Inativação de Genes , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator de Transcrição DP1/metabolismo , Trofoblastos/patologia
3.
Mol Carcinog ; 63(5): 834-848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372346

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is the master regulator of cellular response to hypoxia, and is activated in many cancers contributing to many steps in the metastatic cascade by acting as a key transcription co-regulator for a large number of downstream genes. Presence of hypoxia within a tumor is spatially nonuniform, and can also by dynamic. Further, although HIF-1 is primarily stabilized and activated by lack of molecular O2, its stability is also affected by other factors present in the tumor microenvironment. HIF-1 also crosstalks with other transcription factors in co-regulating gene expression. Consequently, it is nontrivial to predict the gene expression patterns in cells in response to hypoxia, or HIF-1 activation. Additionally, cancers originating from tissue origins with different basal level of partial oxygen tension may activate HIF-1 at different threshold of hypoxia. We analyzed large published single cell RNAseq data for colorectal, lung, and pancreatic cancers to investigate the phenotypic outcome of HIF-1 activation in cancer cells. We found that cancers from tissues with different partial O2 tension levels exhibit HIF-1 activation at different stages of metastasis, and phenotypically respond differently to HIF-1 activation, likely by contextual co-option of different transcription factors. We experimentally confirmed these predictions by using cell lines representative of colorectal, lung, and pancreatic cancers, finding that while hypoxia enhances growth of colorectal cancer, it induces increased invasion of lung, and pancreatic cancers. Our analysis suggest that HIF-1 activation may act as a rheostat regulating downstream gene expression towards phenotypic outcomes differently in various cancers.


Assuntos
Neoplasias Colorretais , Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas , Humanos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Hipóxia/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética
4.
Mol Carcinog ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150154

RESUMO

Hypoxia is one of the key factors in the tumor microenvironment regulating nearly all steps in the metastatic cascade in many cancers, including in breast cancer. The hypoxic regions can however be dynamic with the availability of oxygen fluctuating or oscillating. The canonical response to hypoxia is relayed by transcription factor Hypoxia-Inducible Factor 1 (HIF-1), which is stabilized in hypoxia and acts as the master regulator of a large number of downstream genes. However, HIF-1 transcriptional activity can also fluctuate either due to unstable hypoxia, or by lactate mediated noncanonical degradation of HIF-1. Our understanding of how oscillatory hypoxia or HIF-1 activity specifically influences cancer malignancy is very limited. Here, using MDA-MB-231 cells as a model of triple negative breast cancer characterized by severe hypoxia, we measured the gene expression changes induced specifically by oscillatory hypoxia. We found that oscillatory hypoxia can specifically regulate gene expression differently, and at times opposite to stable hypoxia. Using the Cancer Genome Atlas RNAseq data of human cancer samples, we show that the oscillatory specific gene expression signature in MDA-MB-231 is enriched in most human cancers, and prognosticates low survival in breast cancer patients. In particular, we found that oscillatory hypoxia, unlike stable hypoxia, induces unfolded protein folding response in cells resulting in gene expression predicting reduced survival.

5.
Proc Natl Acad Sci U S A ; 116(28): 14374-14383, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239339

RESUMO

Transplanted stromal cells have demonstrated considerable promise as therapeutic agents in diverse disease settings. Paracrine signaling can be an important mediator of these therapeutic effects at the sites of acute or persistent injury and inflammation. As many stromal cell types, including bone marrow-derived stromal cells (BMSCs), display tissue-specific responses, there is a need to explore their secretory dynamics in the context of tissue and injury type. Paracrine signals are not static, and could encode contextual dynamics in the kinetic changes of the concentrations of the secreted ligands. However, precise measurement of dynamic and context-specific cellular secretory signatures, particularly in adherent cells, remains challenging. Here, by creating an experimental and computational analysis platform, we reconstructed dynamic secretory signatures of cells based on a very limited number of time points. By using this approach, we demonstrate that the secretory signatures of CD133-positive BMSCs are uniquely defined by distinct biological contexts, including signals from injured cardiac cells undergoing oxidative stress, characteristic of cardiac infarction. Furthermore, we show that the mixture of recombinant factors reproducing the dynamics of BMSC-generated secretion can mediate a highly effective rescue of cells injured by oxidative stress and an improved cardiac output. These results support the importance of the dynamic multifactorial paracrine signals in mediating remedial effects of stromal stem cells, and pave the way for stem cell-inspired cell-free treatments of cardiac and other injuries.


Assuntos
Inflamação/genética , Células-Tronco Mesenquimais , Infarto do Miocárdio/genética , Neovascularização Fisiológica/genética , Antígeno AC133/genética , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular/genética , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Estresse Oxidativo/genética , Comunicação Parácrina/genética
6.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361504

RESUMO

Dry Eye Disease (DED) is a complex pathology affecting millions of people with significant impact on quality of life. Corneal inflammation, including via the nuclear factor kappa B (NFκB) pathway, plays a key etiological role in DED. Recombinant human proteoglycan 4 (rhPRG4) has been shown to be a clinically effective treatment for DED that has anti-inflammatory effects in corneal epithelial cells, but the underlying mechanism is still not understood. Our goal was to understand if rhPRG4 affects tumor necrosis factor α (TNFα)-stimulated inflammatory activity in corneal epithelial cells. We treated hTERT-immortalized corneal epithelial (hTCEpi) cells ± TNFα ± rhPRG4 and performed Western blotting on cell lysate and RNA sequencing. Bioinformatics analysis revealed that rhPRG4 had a significant effect on TNFα-mediated inflammation with potential effects on matricellular homeostasis. rhPRG4 reduced activation of key inflammatory pathways and decreased expression of transcripts for key inflammatory cytokines, interferons, interleukins, and transcription factors. TNFα treatment significantly increased phosphorylation and nuclear translocation of p65, and rhPRG4 significantly reduced both these effects. RNA sequencing identified human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), a ubiquitin-like modifier protein which has not been studied in the context of DED, as a key pro-inflammatory transcript increased by TNFα and decreased by rhPRG4. These results were confirmed at the protein level. In summary, rhPRG4 is able to downregulate NFκB activity in hTCEpi cells, suggesting a potential biological mechanism by which it may act as a therapeutic for DED.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , NF-kappa B/metabolismo , Qualidade de Vida , Proteoglicanas/metabolismo , Células Epiteliais/metabolismo , Inflamação
7.
BMC Med Res Methodol ; 21(1): 11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413154

RESUMO

BACKGROUND: The disease burden of SARS-CoV-2 as measured by tests from various localities, and at different time points present varying estimates of infection and fatality rates. Models based on these acquired data may suffer from systematic errors and large estimation variances due to the biases associated with testing. An unbiased randomized testing to estimate the true fatality rate is still missing. METHODS: Here, we characterize the effect of incidental sampling bias in the estimation of epidemic dynamics. Towards this, we explicitly modeled for sampling bias in an augmented compartment model to predict epidemic dynamics. We further calculate the bias from differences in disease prediction from biased, and randomized sampling, proposing a strategy to obtain unbiased estimates. RESULTS: Our simulations demonstrate that sampling biases in favor of patients with higher disease manifestation could significantly affect direct estimates of infection and fatality rates calculated from the numbers of confirmed cases and deaths, and serological testing can partially mitigate these biased estimates. CONCLUSIONS: The augmented compartmental model allows the explicit modeling of different testing policies and their effects on disease estimates. Our calculations for the dependence of expected confidence on a randomized sample sizes, show that relatively small sample sizes can provide statistically significant estimates for SARS-CoV-2 related death rates.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiologia , Pneumonia Viral/epidemiologia , Viés , Humanos , Modelos Estatísticos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Estudos de Amostragem
8.
Nature ; 482(7384): 251-5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22318606

RESUMO

First identified as histone-modifying proteins, lysine acetyltransferases (KATs) and deacetylases (KDACs) antagonize each other through modification of the side chains of lysine residues in histone proteins. Acetylation of many non-histone proteins involved in chromatin, metabolism or cytoskeleton regulation were further identified in eukaryotic organisms, but the corresponding enzymes and substrate-specific functions of the modifications are unclear. Moreover, mechanisms underlying functional specificity of individual KDACs remain enigmatic, and the substrate spectra of each KDAC lack comprehensive definition. Here we dissect the functional specificity of 12 critical human KDACs using a genome-wide synthetic lethality screen in cultured human cells. The genetic interaction profiles revealed enzyme-substrate relationships between individual KDACs and many important substrates governing a wide array of biological processes including metabolism, development and cell cycle progression. We further confirmed that acetylation and deacetylation of the catalytic subunit of the adenosine monophosphate-activated protein kinase (AMPK), a critical cellular energy-sensing protein kinase complex, is controlled by the opposing catalytic activities of HDAC1 and p300. Deacetylation of AMPK enhances physical interaction with the upstream kinase LKB1, leading to AMPK phosphorylation and activation, and resulting in lipid breakdown in human liver cells. These findings provide new insights into previously underappreciated metabolic regulatory roles of HDAC1 in coordinating nutrient availability and cellular responses upstream of AMPK, and demonstrate the importance of high-throughput genetic interaction profiling to elucidate functional specificity and critical substrates of individual human KDACs potentially valuable for therapeutic applications.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Histona Desacetilase 1/metabolismo , Lisina/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Acetilação , Biocatálise , Domínio Catalítico , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Histona Desacetilase 1/genética , Humanos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Especificidade por Substrato , Fatores de Transcrição de p300-CBP/genética
9.
New Phytol ; 210(4): 1169-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26879345

RESUMO

1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species.


Assuntos
Genoma de Planta/genética , Agricultura , Arabidopsis/genética , Arabidopsis/fisiologia , Brassica napus/genética , Brassica napus/fisiologia , Mudança Climática , Produtos Agrícolas , Secas , Estudo de Associação Genômica Ampla , Estresse Fisiológico
10.
Hum Cell ; 37(3): 768-781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478356

RESUMO

Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ácido Láctico , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica
11.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766194

RESUMO

Most common cytometry methods, including flow cytometry, observe suspended or fixed cells and cannot evaluate their structural roles in 3D tissues. However, cellular physical interactions are critical in physiological, developmental, and pathological processes. Here, we present a novel optical visco-elastography that characterizes single-cellular physical interactions by applying in-situ micro-mechanical perturbation to live microtissues under 3D lightsheet microscopy. The 4D digital image correlation (DIC) analysis of ~20,000 nodes tracked the compressive deformation of 3D tissues containing ~500 cells. The computational 3D image segmentation allowed cell-by-cell qualitative observation and statistical analysis, directly correlating multi-channel fluorescence and viscoelasticity. To represent epithelia-stroma interactions, we used a 3D organoid model of maternal-fetal interface and visualized solid-like, well-aligned displacement and liquid-like random motion between individual cells. The statistical analysis through our unique cytometry confirmed that endometrial stromal fibroblasts stiffen in response to decidualization. Moreover, we demonstrated in the 3D model that interaction with placental extravillous trophoblasts partially reverses the attained stiffness, which was supported by the gene expression analysis. Placentation shares critical cellular and molecular significance with various fundamental biological events such as cancer metastasis, wound healing, and gastrulation. Our analysis confirmed existing beliefs and discovered new insights, proving the broad applicability of our method.

12.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585723

RESUMO

As local regions in the tumor outstrip their oxygen supply, hypoxia can develop, affecting not only the cancer cells, but also other cells in the microenvironment, including cancer associated fibroblasts (CAFs). Hypoxia is also not necessarily stable over time, and can fluctuate or oscillate. Hypoxia Inducible Factor-1 is the master regulator of cellular response to hypoxia, and can also exhibit oscillations in its activity. To understand how stable, and fluctuating hypoxia influence breast CAFs, we measured changes in gene expression in CAFs in normoxia, hypoxia, and oscillatory hypoxia, as well as measured change in their capacity to resist, or assist breast cancer invasion. We show that hypoxia has a profound effect on breast CAFs causing activation of key pathways associated with fibroblast activation, but reduce myofibroblast activation and traction force generation. We also found that oscillatory hypoxia, while expectedly resulted in a "sub-hypoxic" response in gene expression, it resulted in specific activation of pathways associated with actin polymerization and actomyosin maturation. Using traction force microscopy, and a nanopatterned stromal invasion assay, we show that oscillatory hypoxia increases contractile force generation vs stable hypoxia, and increases heterogeneity in force generation response, while also additively enhancing invasibility of CAFs to MDA-MB-231 invasion. Our data show that stable and unstable hypoxia can regulate many mechnobiological characteristics of CAFs, and can contribute to transformation of CAFs to assist cancer dissemination and onset of metastasis.

13.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38328204

RESUMO

Hypoxia is one of the key factors in the tumor microenvironment regulating nearly all steps in the metastatic cascade in many cancers, including in breast cancer. The hypoxic regions can however be dynamic with the availability of oxygen fluctuating or oscillating. The canonical response to hypoxia is relayed by transcription factor HIF-1, which is stabilized in hypoxia and acts as the master regulator of a large number of downstream genes. However, HIF-1 transcriptional activity can also fluctuate either due to unstable hypoxia, or by lactate mediated non-canonical degradation of HIF-1. Our understanding of how oscillatory hypoxia or HIF-1 activity specifically influence cancer malignancy is very limited. Here, using MDA-MB-231 cells as a model of triple negative breast cancer characterized by severe hypoxia, we measured the gene expression changes induced specifically by oscillatory hypoxia. We found that oscillatory hypoxia can specifically regulate gene expression differently, and at times opposite to stable hypoxia. Using The Cancer Genome Atlas (TCGA) RNAseq data of human cancer samples, we show that the oscillatory specific gene expression signature in MDA-MB-231 is enriched in most human cancers, and prognosticate low survival in breast cancer patients. In particular, we found that oscillatory hypoxia, unlike stable hypoxia, induces unfolded protein folding response (UPR) in cells resulting in gene expression predicting reduced survival.

14.
Cancers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473331

RESUMO

Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to metastatic transition of the cancer. Breast cancers are characterized by regions of hypoxia, which can be temporally unstable owing to a mismatch between oxygen supply and consumption. Using a high-sensitivity nanopatterned stromal invasion assay, we found that ASCs could promote stromal invasion of not only breast cancer cell lines but also MCF10A1, a cell line derived from untransformed breast epithelium. RNA sequencing of MCF10A1 cells conditioned with medium from ASCs revealed upregulation of genes associated with increased cell migration, chemotaxis, and metastasis. Furthermore, we found that fluctuating or oscillating hypoxia could induce senescence in ASCs, which could result in an increased invasive potential in the treated MCF10A1 cells. These findings highlight the complex interplay within the breast cancer microenvironment, hypoxia, and the role of ASCs in transforming even non-cancerous breast epithelium toward an invasive phenotype, providing insights into early metastatic events.

15.
Bull Math Biol ; 75(8): 1400-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23417627

RESUMO

Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell-cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.


Assuntos
Comunicação Celular/fisiologia , Modelos Biológicos , Nanotubos , Animais , Humanos , Conceitos Matemáticos , Proteínas de Membrana/metabolismo , Transporte Proteico
16.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565326

RESUMO

Cancer-associated fibroblasts (CAFs) are now appreciated as key regulators of cancer metastasis, particularly in cancers with high stromal content, e.g., pancreatic ductal cell carcinoma (PDAC). However, it is not yet well understood if fibroblasts are always primed to be cooperative in PDAC transition to metastasis, if they undergo transformation which ensures their cooperativity, and if such transformations are cancer-driven or intrinsic to fibroblasts. We performed a fibroblast-centric analysis of PDAC cancer, as it transitioned from the primary site to trespass stromal compartment reaching the lymph node using published single-cell RNA sequencing data by Peng et al. We have characterized the change in fibroblast response to cancer from a normal wound healing response in the initial stages to the emergence of subclasses with myofibroblast and inflammatory fibroblasts such as signatures. We have previously posited "Evolved Levels of Invasibility (ELI)", a framework describing the evolution of stromal invasability as a selected phenotype, which explains the large and correlated reduction in stromal invasion by placental trophoblasts and cancer cells in certain mammals. Within PDAC samples, we found large changes in fibroblast subclasses at succeeding stages of PDAC progression, with the emergence of specific subclasses when cancer trespasses stroma to metastasize to proximal lymph nodes (stage IIA to IIB). Surprisingly, we found that the initial metastatic transition is accompanied by downregulation of ELI-predicted pro-resistive genes, and the emergence of a subclass of fibroblasts with ELI-predicted increased invasibility. Interestingly, this trend was also observed in stellate cells. Using a larger cohort of bulk RNAseq data from The Cancer Genome Atlas for PDAC cancers, we confirmed that genes describing this emergent fibroblast subclass are also correlated with lymph node metastasis of cancer cells. Experimental testing of selected genes characterizing pro-resistive and pro-invasive fibroblast clusters confirmed their contribution in regulating stromal invasability as a phenotype. Our data confirm that the complexity of stromal response to cancer is really a function of stage-wise emergence of distinct fibroblast clusters, characterized by distinct gene sets which confer initially a predominantly pro-resistive and then a pro-invasive property to the stroma. Stromal response therefore transitions from being tumor-limiting to a pro-metastatic state, facilitating stromal trespass and the onset of metastasis.

17.
Cell Syst ; 13(12): 1048-1064.e7, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36462504

RESUMO

Response to hypoxia is a highly regulated process, but little is known about single-cell responses to hypoxic conditions. Using fluorescent reporters of hypoxia response factor-1α (HIF-1α) activity in various cancer cell lines and patient-derived cancer cells, we show that hypoxic responses in individual cancer cells can be highly dynamic and variable. These responses fall into three classes, including oscillatory activity. We identify a molecular mechanism that can account for all three response classes, implicating reactive-oxygen-species-dependent chaperone-mediated autophagy of HIF-1α in a subset of cells. Furthermore, we show that oscillatory response is modulated by the abundance of extracellular lactate in a quorum-sensing-like mechanism. We show that oscillatory HIF-1α activity rescues hypoxia-mediated inhibition of cell division and causes broad suppression of genes downregulated in cancers and activation of genes upregulated in many cancers, suggesting a mechanism for aggressive growth in a subset of hypoxic tumor cells.


Assuntos
Autofagia Mediada por Chaperonas , Ácido Láctico , Humanos , Ácido Láctico/metabolismo , Linhagem Celular Tumoral , Hipóxia/metabolismo , Proliferação de Células
18.
Cell Rep ; 40(4): 111146, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905711

RESUMO

The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes. Endothelin-1-induced pathological hypertrophy is mitigated on CMM, highlighting the role of a native cardiac microenvironment in withstanding hypertrophy progression. CMM is a convenient model for accelerated development of ventricular myocytes manifesting highly specialized cardiac-specific functions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Adulto , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Hipertrofia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
19.
Evol Med Public Health ; 10(1): 447-462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148042

RESUMO

CD44 is an extracellular matrix receptor implicated in cancer progression. CD44 increases the invasibility of skin (SF) and endometrial stromal fibroblasts (ESF) by cancer and trophoblast cells. We reasoned that the evolution of CD44 expression can affect both, the fetal-maternal interaction through CD44 in ESF as well as vulnerability to malignant cancer through expression in SF. We studied the evolution of CD44 expression in mammalian SF and ESF and demonstrate that in the human lineage evolved higher CD44 expression. Isoform expression in cattle and human is very similar suggesting that differences in invasibility are not due to the nature of expressed isoforms. We then asked whether the concerted gene expression increase in both cell types is due to shared regulatory mechanisms or due to cell type-specific factors. Reporter gene experiments with cells and cis-regulatory elements from human and cattle show that the difference of CD44 expression is due to cis effects as well as cell type-specific trans effects. These results suggest that the concerted expression increase is likely due to selection acting on both cell types because the evolutionary change in cell type-specific factors requires selection on cell type-specific functions. This scenario implies that the malignancy enhancing effects of elevated CD44 expression in humans likely evolved as a side-effect of positive selection on a yet unidentified other function of CD44. A possible candidate is the anti-fibrotic effect of CD44 but there are no reliable data showing that humans and primates are less fibrotic than other mammals.

20.
J Clin Med ; 10(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562461

RESUMO

Mammals exhibit large differences in rates of cancer malignancy, even though the tumor formation rates may be similar. In placental mammals, rates of malignancy correlate with the extent of placental invasion. Our Evolved Levels of Invasibility (ELI) framework links these two phenomena identifying genes that potentially confer resistance in stromal fibroblasts to limit invasion, from trophoblasts in the endometrium, and from disseminating melanoma in the skin. Herein, using patient data from The Cancer Genome Atlas (TCGA), we report that these anti-invasive genes may be crucial in melanoma progression in human patients, and that their loss is correlated with increased cancer spread and lowered survival. Our results suggest that, surprisingly, these anti-invasive genes, which have lower expression in humans compared to species with non-invasive placentation, may potentially prevent stromal invasion, while a further reduction in their levels increases the malignancy and lethality of melanoma. Our work links evolution, comparative biology, and cancer progression across tissues, indicating new avenues for using evolutionary medicine to prognosticate and treat human cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA