Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Liver Int ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287155

RESUMO

BACKGROUND: Cirrhosis continues to be the most common cause of chronic liver disease-related deaths globally, which puts significant strain on global health. This report aims to investigate the patterns of cirrhosis in China, the United States, India and worldwide from 1990 to 2019 through an epidemiological analysis of the disease utilizing data from the Global Burden of Disease Study (GBD) 2019 database. METHODS: Download the GBD database's statistics on liver cirrhosis deaths and Disability-Adjusted Life Years for the years 1990-2019 worldwide as well as for China, the United States and India. Utilize techniques like age-period-cohort interaction, decomposition analysis, study of health inequities, Joinpoint model and Bayesian Average Annual Percentage Change model to process the data. RESULTS: The main age group affected by cirrhosis disease, according to the results, is 50-69 years old. According to the Joinpoint model, there has been a negative worldwide Average Annual Percent Change (AAPC) in the burden of cirrhosis between 1990 and 2019. Only the USA's AAPC is positive out of the three nations that were evaluated (albeit its 95% confidence interval spans 0). These are China, India and the United States. Forecasting models indicate that the prevalence of cirrhosis will keep rising in the absence of government action. According to decomposition analysis, the main factors contributing to the rising burden of cirrhosis are population ageing and size, whereas changes in the disease's epidemiology slow the disease's growth. Research on health disparities indicates that, between 1990 and 2019, there was a downward trend in health disparities between various locations. CONCLUSION: Health organizations across different areas should take aggressive measures to address the worrisome prevalence of cirrhosis.

2.
Acta Physiol Plant ; 41(7): 126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32214546

RESUMO

Toona sinensis is a deciduous tree native to eastern and southeastern Asia that has important culinary and cultural values. To expand current knowledge of the transcriptome and functional genomics in this species, a de novo transcriptome sequence analysis of young and mature leaf tissues of T. sinensis was performed using the Illumina platform. Over 8.1 Gb of data were generated, assembled into 64,541 unigenes, and annotated with known biological functions. Proteins involved in primary metabolite biosynthesis were identified based on similarities to known proteins, including some related to biosynthesis of carbohydrates, amino acids, lipids, and energy. Analysis of unigenes differentially expressed between young and mature leaves (transcriptomic libraries 'YL' and 'ML', respectively) showed that the KEGG pathways of phenylpropanoid, naringenin, lignin, cutin, suberin, and wax biosynthesis were significantly enriched in mature leaves. These results not only expand knowledge of transcriptome characteristics for this valuable species, but also provide a useful transcriptomic dataset to accelerate the researches on its metabolic mechanisms and functional genomics. This study can also further the understanding of unique aromatic metabolism and Chinese medicinal properties of T. sinensis.

3.
Biochem Biophys Res Commun ; 471(1): 198-204, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26826388

RESUMO

Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancy with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Iridaceae/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Dormência de Plantas/fisiologia , Clonagem Molecular , Germinação/fisiologia , Tubérculos
4.
Biochem Biophys Res Commun ; 474(1): 206-212, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27107698

RESUMO

Starch is the main storage compound in underground organs like corms. ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in storage organs and is likely one of the most important determinant of sink strength. Here, we identify an AGPase gene (GhAGPS1) from gladiolus. The highest transcriptional levels of GhAGPS1 were observed in cormels and corms. Transformation of GhAGPS1 into Arabidopsis rescued the phenotype of aps1 mutant. Silencing GhAGPS1 in gladiolus corms by virus-induced gene silencing (VIGS) decreased the transcriptional levels of two genes and starch content. Transmission electron microscopy analyses of leaf and corm sections confirmed that starch biosynthesis was inhibited. Corm weight and cormel number reduced significantly in the silenced plants. Taken together, these results indicate that inhibiting the expression of AGPase gene could impair starch synthesis, which results in the lowered corm quality and cormel yield in gladiolus.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Iridaceae/enzimologia , Iridaceae/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Tubérculos/fisiologia , Amido/biossíntese , Especificidade de Órgãos , Distribuição Tecidual
5.
Plant Cell Rep ; 33(9): 1519-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874231

RESUMO

KEY MESSAGE: A heat stress transcription factor LlHSFA1 in lily and its relationship with LlHSFA2 was investigated, and its function in enhancing thermotolerance was confirmed by analyzing transgenic Arabidopsis thaliana overexpressed LlHSFA1. A large family of heat stress transcription factors that are involved in the heat stress response in plants can induce the expression of multiple genes related to thermotolerance including heat-shock proteins. In this study, a novel class A1 HSF named LlHSFA1 was isolated from leaves of lily (Lilium longiflorum cv. 'White Heaven') using the rapid amplification of cDNA ends technique. Analysis of the deduced amino acid sequence and construction of a phylogenetic tree showed that LlHSFA1 contained five critical domains and motifs and belonged to the A1 family of HSFs. Following the heat treatment of lily leaves, transcription of LlHSFA1 was induced to a varying extent, related to the time of measurement. The induced expression peak of LlHSFA1 occurred prior to that of LlHSFA2, during the early phase of heat stress. Following transient expression of LlHSFA1 in Nicotiana benthamiana, LlHSFA1 was found to be localized in both the nucleus and the cytoplasm. Analysis using bimolecular fluorescence complementation and a yeast two-hybrid assay demonstrated that LlHSFA1 could interact with LlHSFA2. Use of a yeast one-hybrid assay confirmed that LlHSFA1 had transcriptional activation activity. In transgenic Arabidopsis lines overexpressing LlHSFA1 under unstressed conditions, the expression of some putative target genes was up-regulated, in comparison with expression in wild-type plants, and furthermore, the thermotolerance of the transgenic lines was enhanced. Overall, LlHSFA1 was demonstrated to play an important role in the heat stress response of lily and to be a novel candidate gene for application in lily breeding, using genetic modification approaches.


Assuntos
Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Lilium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , DNA Complementar/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Genes Reporter , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
6.
Mar Environ Res ; 195: 106370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295609

RESUMO

A portion of carbon produced from shellfish and kelp cultivation is buried in sedimentary environment, and mariculture carbon sequestration potential is an important part of marine carbon sink and has attracted worldwide attention. Total organic carbon (TOC), total nitrogen (TN) and their stable isotopes (δ13C and δ15N), as well as the mass distribution of these size-fractionated particles were determined in order to study the distribution and sources of TOC in Sanggou Bay. Results showed that sediment organic matter has complex sources from kelp (30.4 %), marine phytoplankton (25.6 %), shellfish (23.7 %), terrestrial input (20.3 %), and mariculture activities of shellfish and kelp was the major component in surface sediment. Approximately 44-69 % of TOC was associated with the 16-32 µm fraction. Low δ13C (-22.1 to -15.1‰) and high δ15N (5.0-5.7‰) were observed in fine particles (<16 µm), indicating relatively high contribution of marine phytoplankton and mariculture derived organic carbon. On the contrary, relatively higher δ13C (-20.2 to -9.2‰) and lower values δ15N (-4.7 to 5.2‰) in coarse particles (>32 µm) suggested that sedimentary organic carbon might be influenced by some additional sources from terrestrial input or seaweed. The mass distribution, δ13C and δ15N of size-fractionated particles in sediments indicated that sediment was obviously redistributed under the condition of mariculture, and further suggested that mariculture derived organic matter have modified the distribution and sources of sedimentary organic matter. This study provided great insight into distribution and source of sedimentary organic carbon from the perspective of size-fractionated particles in mariculture area.


Assuntos
Sedimentos Geológicos , Kelp , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Monitoramento Ambiental/métodos , Carbono/análise , China
7.
Plants (Basel) ; 13(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204766

RESUMO

In our previous research, we found that trichokonins' (TKs) employment improved the thermotolerance of the Lanzhou lily, a renowned edible crop species endemic to China that is relatively susceptible to high temperatures (HTs). Here, a novel Lanzhou lily GRAS gene, LzSCL9, was identified to respond to heat stress (HS) and HS+TKs treatment based on transcriptome and RT-qPCR analysis. TKs could improve the upregulation of LzSCL9 during long-term HS. The expression profile of LzSCL9 in response to HS with or without TKs treatment showed a significant positive correlation with LzHsfA2a-1, which was previously identified as a key regulator in TKs' conferred resilience to HT. More importantly, overexpression of LzSCL9 in the lily enhanced its tolerance to HTs and silencing LzSCL9 in the lily reduced heat resistance. Taken together, this study identified the positive role of LzSCL9 in TK-induced thermotolerance, thereby preliminarily establishing a molecular mechanism on TKs regulating the thermostability of the Lanzhou lily and providing a new candidate regulator for plant heat-resistant breeding.

8.
Front Plant Sci ; 14: 1182977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351207

RESUMO

Lanzhou lily (Lilium davidii var. unicolor) is a renowned edible crop produced in China and relatively sensitive to high temperature (HT). Trichokonins (TKs) are antimicrobial peptaibols secreted from Trichoderma longibrachiatum strain SMF2. Here, we report that TKs application improves the thermotolerance of Lanzhou lily. The activity of the antioxidant enzyme system (SOD, CAT, and POD), the level of heat-resistance-associated phytohormones (ABA, SA, and JA), the relative water content (RWC), the content of chlorophyll (Chl), and the net photosynthetic rate (P n) were promoted by TKs treatment in Lanzhou lily plants subjected to heat stress (HS). TKs treatment also mitigated cell injury as shown by a lower accumulation of malondialdehyde (MDA) and relative electrolyte leakage (REL) under HS conditions. RNA-seq data analysis showed that more than 4.5 times differentially expressed genes (DEGs) responded to TKs treatment under HS compared to non-HS, and TKs treatment reduced protein folding and enhanced cellular repair function under HS conditions. The analyses of DEGs involved in hormone (ABA, SA and JA) synthesis and signaling pathways suggested that TKs might improve Lanzhou lily heat tolerance by promoting ABA synthesis and signal transduction. TKs highly induced DEGs of the HSF-HSP pathway under HS, in which HSFA2 accounted for most of the HSF family. Furthermore, TKs treatment resulted in the upregulation of heat-protective genes LzDREB2B, LzHsfA2a, LzMBF1c, LzHsp90, and LzHsp70 involved in HSF-HSP signal pathway after long-term HS. LzHsfA2a-1 likely plays a key role in acquisition of TKs-induced thermotolerance of Lanzhou lily as evidenced by the sustained response to HS, the enhanced response to TKs treatment under long-term HS, and the high sequence similarity to LlHsfA2a which is a key regulator for the improvement of heat tolerance in Lilium longiflorum. Our results reveal the underlying mechanisms of TKs-mediated thermotolerance in Lanzhou lily and highlight an attractive approach to protecting crop plants from damage caused by HS in a global warming future.

9.
Genes (Basel) ; 13(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205410

RESUMO

Lily is a popular and economically ornamental crop around the world. However, its high production of pollen grains causes serious problems to consumers, including allergies and staining of clothes. During anther development, the tapetum is a crucial step for pollen formation and microspore release. Therefore, it is important to understand the mechanism of tapetum degradation and microspore development in lily where free pollen contamination occurs. Here, we used the cut lily cultivar 'Siberia' to characterize the process of tapetum degradation through the use of cytology and transcriptomic methods. The cytological observation indicated that, as the lily buds developed from 4 cm (Lo 4 cm) to 8 cm (Lo 8 cm), the tapetum completed the degradation process and the microspores matured. Furthermore, by comparing the transcriptome profiling among three developmental stages (Lo 4 cm, Lo 6 cm and Lo 8 cm), we identified 27 differentially expressed genes. These 27 genes were classed into 4 groups by function, namely, cell division and expansion, cell-wall morphogenesis, transcription factors, LRR-RLK (leucine-rich repeat receptor-like kinases), plant hormone biosynthesis and transduction. Quantitative real-time PCR was performed as validation of the transcriptome data. These selected genes are candidate genes for the tapetum degradation and microspore development of lily and our work provides a theoretical basis for breeding new lily cultivars without pollen.


Assuntos
Lilium , Flores , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
10.
Genes (Basel) ; 12(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681029

RESUMO

Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.


Assuntos
Diferenciação Celular/genética , Epigênese Genética/genética , Flores/genética , Dormência de Plantas/genética , Aclimatação/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/genética
11.
Mol Ecol Resour ; 21(4): 1243-1255, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421343

RESUMO

Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.


Assuntos
Genoma de Planta , Meliaceae , Toona , China , Cromossomos de Plantas , Malásia , Filogenia , Toona/genética
12.
Front Plant Sci ; 6: 960, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579187

RESUMO

The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA