Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(12): 2836-2854.e9, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37963457

RESUMO

Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells. Twelve subpopulations changed with age, including the accumulation of GZMK+CD8+ T cells and HLA-DR+CD4+ T cells. In contrast to other T cell memory subsets, transcriptionally distinct NKG2C+GZMB-CD8+ T cells counterintuitively decreased with age. Furthermore, we found a concerted age-associated increase in type 2/interleukin (IL)4-expressing memory subpopulations across CD4+ and CD8+ T cell compartments (CCR4+CD8+ Tcm and Th2 CD4+ Tmem), suggesting a systematic functional shift in immune homeostasis with age. Our work provides novel insights into healthy human aging and a comprehensive annotated resource.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos T , Envelhecimento , Receptores de Antígenos de Linfócitos T/metabolismo , Granzimas/metabolismo
2.
Nature ; 631(8019): 207-215, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926576

RESUMO

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Assuntos
Macrófagos , Oxilipinas , Piroptose , Secretoma , Cicatrização , Animais , Feminino , Humanos , Camundongos , Caspase 1/metabolismo , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Gasderminas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta , Lipidômica , Macrófagos/metabolismo , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Oxilipinas/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Secretoma/metabolismo , Cicatrização/fisiologia
3.
Nature ; 632(8023): 182-191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048822

RESUMO

CD4+ T cells can either enhance or inhibit tumour immunity. Although regulatory T cells have long been known to impede antitumour responses1-5, other CD4+ T cells have recently been implicated in inhibiting this response6,7. Yet, the nature and function of the latter remain unclear. Here, using vaccines containing MHC class I (MHC-I) neoantigens (neoAgs) and different doses of tumour-derived MHC-II neoAgs, we discovered that whereas the inclusion of vaccines with low doses of MHC-II-restricted peptides (LDVax) promoted tumour rejection, vaccines containing high doses of the same MHC-II neoAgs (HDVax) inhibited rejection. Characterization of the inhibitory cells induced by HDVax identified them as type 1 regulatory T (Tr1) cells expressing IL-10, granzyme B, perforin, CCL5 and LILRB4. Tumour-specific Tr1 cells suppressed tumour rejection induced by anti-PD1, LDVax or adoptively transferred tumour-specific effector T cells. Mechanistically, HDVax-induced Tr1 cells selectively killed MHC-II tumour antigen-presenting type 1 conventional dendritic cells (cDC1s), leading to low numbers of cDC1s in tumours. We then documented modalities to overcome this inhibition, specifically via anti-LILRB4 blockade, using a CD8-directed IL-2 mutein, or targeted loss of cDC2/monocytes. Collectively, these data show that cytotoxic Tr1 cells, which maintain peripheral tolerance, also inhibit antitumour responses and thereby function to impede immune control of cancer.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD4-Positivos , Citotoxicidade Imunológica , Imunoterapia , Neoplasias , Linfócitos T Reguladores , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Células Dendríticas/imunologia , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/metabolismo , Interleucina-10/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Receptores Imunológicos/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Tolerância Imunológica , Linfócitos T CD8-Positivos/imunologia
5.
Biochemistry (Mosc) ; 88(10): 1488-1503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105019

RESUMO

Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.


Assuntos
Fotossíntese , ATPases Translocadoras de Prótons , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo
6.
J Exp Bot ; 72(15): 5534-5552, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33974689

RESUMO

In mature leaves, cell-to-cell transport via plasmodesmata between mesophyll cells links the production of assimilates by photosynthesis with their export to sink organs. This study addresses the question of how signals derived from chloroplasts and photosynthesis influence plasmodesmata permeability. Cell-to-cell transport was analyzed in leaves of the Arabidopsis chlorophyll b-less ch1-3 mutant, the same mutant complemented with a cyanobacterial CAO gene (PhCAO) overaccumulating chlorophyll b, the trxm3 mutant lacking plastidial thioredoxin m3, and the ntrc mutant lacking functional NADPH:thioredoxin reductase C. The regulation of plasmodesmata permeability in these lines could not be traced back to the reduction state of the thioredoxin system or the types and levels of reactive oxygen species produced in chloroplasts; however, it could be related to chloroplast ATP and NADPH production. The results suggest that light enables plasmodesmata closure via an increase in the ATP and NADPH levels produced in photosynthesis, providing a control mechanism for assimilate export based on the rate of photosynthate production in the Calvin-Benson cycle. The level of chlorophyll b influences plasmodesmata permeability via as-yet-unidentified signals. The data also suggest a role of thioredoxin m3 in the regulation of cyclic electron flow around photosystem I.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , NADP/metabolismo , Oxirredução , Fotossíntese , Folhas de Planta/metabolismo , Plasmodesmos/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361018

RESUMO

H+-ATP-ases, which support proton efflux through the plasma membrane, are key molecular transporters for electrogenesis in cells of higher plants. Initial activities of the transporters can influence the thresholds of generation of electrical responses induced by stressors and modify other parameters of these responses. Previously, it was theoretically shown that the stochastic heterogeneity of individual cell thresholds for electrical responses in a system of electrically connected neuronal cells can decrease the total threshold of the system ("diversity-induced resonance", DIR). In the current work, we tested a hypothesis about decreasing the thresholds of generation of cooling-induced electrical responses in a system of electrically connected plant cells with increasing stochastic spatial heterogeny in the initial activities of H+-ATP-ases in these cells. A two-dimensional model of the system of electrically connected excitable cells (simple imitation of plant leaf), which was based on a model previously developed in our works, was used for the present investigation. Simulation showed that increasing dispersion in the distribution of initial activities of H+-ATP-ases between cells decreased the thresholds of generation of cooling-induced electrical responses. In addition, the increasing weakly influenced the amplitudes of electrical responses. Additional analysis showed two different mechanisms of the revealed effect. The increasing spatial heterogeneity in activities of H+-ATP-ases induced a weak positive shift of the membrane potential at rest. The shift decreased the threshold of electrical response generation. However, the decreased threshold induced by increasing the H+-ATP-ase activity heterogeneity was also observed after the elimination of the positive shift. The result showed that the "DIR-like" mechanism also participated in the revealed effect. Finally, we showed that the standard deviation of the membrane potentials before the induction of action potentials could be used for the estimation of thresholds of cooling-induced plant electrical responses. Thus, spatial heterogeneity in the initial activities of H+-ATP-ases can be a new regulatory mechanism influencing the generation of electrical responses in plants under actions of stressors.


Assuntos
Potenciais da Membrana , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Bombas de Próton/metabolismo , Temperatura Baixa , Células Vegetais/fisiologia
8.
BMC Bioinformatics ; 21(Suppl 6): 261, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33203350

RESUMO

BACKGROUND: Integrative network methods are commonly used for interpretation of high-throughput experimental biological data: transcriptomics, proteomics, metabolomics and others. One of the common approaches is finding a connected subnetwork of a global interaction network that best encompasses significant individual changes in the data and represents a so-called active module. Usually methods implementing this approach find a single subnetwork and thus solve a hard classification problem for vertices. This subnetwork inherently contains erroneous vertices, while no instrument is provided to estimate the confidence level of any particular vertex inclusion. To address this issue, in the current study we consider the active module problem as a soft classification problem. RESULTS: We propose a method to estimate probabilities of each vertex to belong to the active module based on Markov chain Monte Carlo (MCMC) subnetwork sampling. As an example of the performance of our method on real data, we run it on two gene expression datasets. For the first many-replicate expression dataset we show that the proposed approach is consistent with an existing resampling-based method. On the second dataset the jackknife resampling method is inapplicable due to the small number of biological replicates, but the MCMC method can be run and shows high classification performance. CONCLUSIONS: The proposed method allows to estimate the probability that an individual vertex belongs to the active module as well as the false discovery rate (FDR) for a given set of vertices. Given the estimated probabilities, it becomes possible to provide a connected subgraph in a consistent manner for any given FDR level: no vertex can disappear when the FDR level is relaxed. We show, on both simulated and real datasets, that the proposed method has good computational performance and high classification accuracy.


Assuntos
Algoritmos , Biologia Computacional , Cadeias de Markov , Método de Monte Carlo , Teorema de Bayes , Expressão Gênica , Probabilidade
9.
Photosynth Res ; 146(1-3): 175-187, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32043219

RESUMO

The remote sensing of a plant's physiological state is a key problem of precision agriculture. The photochemical reflectance index (PRI), which is based on the intensities of the reflected light at 531 and 570 nm, is an important tool for the remote sensing of photosynthetic processes in plants. In particular, the PRI can be strongly connected with the non-photochemical quenching of chlorophyll fluorescence (NPQ) and the quantum yield of photosystem II (ФPSII); however, this connection is dependent on illumination, the intensity of stressor actions, the time scale of measurements, etc. The aim of the present work was to analyze the connection of PRI with the energy-dependent component of NPQ (NPQF) and ФPSII under heating and soil drought conditions. Pea, wheat, and pumpkin seedlings, which were grown under controlled conditions, were investigated. A PAM fluorometer Dual-PAM-100 and spectrometer S-100 were used for measurements of photosynthetic parameters and PRI, respectively. It was shown that heat stress increased the NPQF and the magnitude of light-induced changes in PRI (ΔPRI) and decreased ФPSII in pea seedlings. The decreased ФPSII and increased ΔPRI were observed in wheat after heating, but significant changes in NPQF were absent; the significant decrease in ФPSII was observed in pumpkin seedlings, while there were no significant changes in the other parameters. ΔPRI and NPQF after heating were significantly correlated. However, a significant correlation of the absolute values of PRI with photosynthetic parameters was absent. The soil drought increased NPQF and the magnitude of ΔPRI and decreased ФPSII in peas. ΔPRI was strongly correlated with photosynthetic parameters, but this correlation was absent for the absolute value of PRI. Thus, ΔPRI is strongly connected with the magnitude of NPQF and can be used as an estimator of this parameter.


Assuntos
Cucurbita/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/fisiologia , Triticum/fisiologia , Secas , Resposta ao Choque Térmico , Solo/química
10.
Photosynth Res ; 136(2): 215-228, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29086893

RESUMO

Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/fisiologia , Dióxido de Carbono/metabolismo , Estimulação Elétrica , Transporte de Elétrons , Transferência de Energia , Fluorescência , Concentração de Íons de Hidrogênio , Luz , Pisum sativum/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Transpiração Vegetal , Transdução de Sinais
11.
J Membr Biol ; 250(5): 407-423, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711950

RESUMO

Electrical activity plays an important role in plant life; in particular, electrical responses can participate in the reception of the action of stressors (local electrical responses and oscillations) and signal transduction into unstimulated parts of the plant (action potential, variation potential and system potential). Understanding the mechanisms of electrical responses and subsequent changes in physiological processes and the prediction of plant responses to stressors requires the elaboration of mathematical models of electrical activity in plant organisms. Our review describes approaches to the simulation of plant electrogenesis and summarizes current models of electrical activity in these organisms. It is shown that there are numerous models of the generation of electrical responses, which are based on various descriptions (from modifications of the classical Hodgkin-Huxley model to detailed models, which consider ion transporters, regulatory processes, buffers, etc.). A moderate number of works simulate the propagation of electrical signals using equivalent electrical circuits, systems of excitable elements with local electrical coupling and descriptions of chemical signal propagation. The transmission of signals from a plasma membrane to intracellular compartments (endoplasmic reticulum, vacuole) during the generation of electrical responses is much less modelled. Finally, only a few works simulate plant physiological changes that are connected with electrical responses or investigate the inverse problem: reconstruction of the type and parameters of stimuli through the analysis of electrical responses. In the conclusion of the review, we discuss future perspectives on the simulation of electrical activity in plants.


Assuntos
Fenômenos Eletrofisiológicos , Modelos Biológicos , Fenômenos Fisiológicos Vegetais
12.
Int J Mol Sci ; 18(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182594

RESUMO

The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.


Assuntos
Cobalto/química , Porfirinas/química , Animais , Boro/química , Terapia por Captura de Nêutron de Boro , Carcinoma/terapia , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes
13.
Photosynth Res ; 130(1-3): 373-387, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27154573

RESUMO

This review summarizes current works concerning the effects of electrical signals (ESs) on photosynthesis, the mechanisms of the effects, and its physiological role in plants. Local irritations of plants induce various photosynthetic responses in intact leaves, including fast and long-term inactivation of photosynthesis, and its activation. Irritation-induced ESs, including action potential, variation potential, and system potential, probably causes the photosynthetic responses in intact leaves. Probable mechanisms of induction of fast inactivation of photosynthesis are associated with Ca2+- and (or) H+-influxes during ESs generation; long-term inactivation of photosynthesis might be caused by Ca2+- and (or) H+-influxes, production of abscisic and jasmonic acids, and inactivation of phloem H+-sucrose symporters. It is probable that subsequent development of inactivation of photosynthesis is mainly associated with decreased CO2 influx and inactivation of the photosynthetic dark reactions, which induces decreased photochemical quantum yields of photosystems I and II and increased non-photochemical quenching of photosystem II fluorescence and cyclic electron flow around photosystem I. However, other pathways of the ESs influence on the photosynthetic light reactions are also possible. One of them might be associated with ES-connected acidification of chloroplast stroma inducing ferredoxin-NADP+ reductase accumulation at the thylakoids in Tic62 and TROL complexes. Mechanisms of ES-induced activation of photosynthesis require further investigation. The probable ultimate effect of ES-induced photosynthetic responses in plant life is the increased photosynthetic machinery resistance to stressors, including high and low temperatures, and enhanced whole-plant resistance to environmental factors at least during 1 h after irritation.


Assuntos
Fotossíntese/fisiologia , Potenciais de Ação/fisiologia , Eletrofisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais
14.
Plant Cell Physiol ; 55(8): 1511-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928219

RESUMO

Variation potential (VP) in higher plants cells is a transitory depolarization of the plasma membrane occurring in response to external damage. The effects of VP on different physiological processes are actively studied, but little is known about their ionic nature, which limits the interpretation of VP-induced functional changes. It is thought that VP generation is based on transient inactivation of plasma membrane proton pumps and is not connected to passive ionic fluxes. To study burn-induced VP in wheat seedlings, we measured membrane electric potential and cell input resistance. Cell input resistance decreased during VP generation, indicating that ionic channels were activated. In addition, VP amplitude decreased when the extracellular calcium concentration was lowered. When anion channels were blocked by ethacrynic acid addition, the VP had poor depolarization speed and amplitude. A decrease in the chlorine gradient by extracellular chlorine concentration shift leads to lowering of the VP amplitude and depolarization speed. This result indicates the role of chlorine efflux in depolarization phase formation. The VP repolarization is connected to potassium ion efflux, that is confirmed by repolarization suppression under addition of the potassium channel blocker tetraethylammonium (TEA) and an increase in the extracellular potassium concentration. We also showed that the addition of a proton pump inhibitor leads to membrane potential depolarization and inhibition of VP generation. These results suggest that the VP may be formed not only by transient suppression of proton pumps but also by passive ionic fluxes through the membrane.


Assuntos
Potenciais da Membrana/fisiologia , Triticum/fisiologia , Transporte Biológico , Queimaduras , Cálcio/metabolismo , Membrana Celular/metabolismo , Cloro/metabolismo , Canais Iônicos/metabolismo , Folhas de Planta/fisiologia , Potássio/metabolismo , Plântula/fisiologia
15.
Plant Cell Environ ; 37(11): 2532-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24635649

RESUMO

Electrical signals (action potential and variation potential, VP) caused by environmental stimuli are known to induce various physiological responses in plants, including changes in photosynthesis; however, their functional mechanisms remain unclear. In this study, the influence of VP on photosynthesis in pea (Pisum sativum L.) was investigated and the proton participation in this process analysed. VP, induced by local heating, inactivated photosynthesis and activated respiration, with the initiation of the photosynthetic response connected with inactivation of the photosynthetic dark stage; however, direct VP influence on the light stage was also probable. VP generation was accompanied with pH increases in apoplasts (0.17-0.30 pH unit) and decreases in cytoplasm (0.18-0.60 pH unit), which probably reflected H(+) -ATPase inactivation and H(+) influx during this electrical event. Imitation of H(+) influx using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced a photosynthetic response that was similar with a VP-induced response. Experiments on chloroplast suspensions showed that decreased external pH also induced an analogous response and that its magnitude depended on the magnitude of pH change. Thus, the present results showed that proton cellular influx was the probable mechanism of VP's influence on photosynthesis in pea. Potential means of action for this influence are discussed.


Assuntos
Potenciais de Ação/fisiologia , Fotossíntese/fisiologia , Pisum sativum/citologia , Pisum sativum/fisiologia , Células Vegetais/metabolismo , Prótons , Potenciais de Ação/efeitos da radiação , Dióxido de Carbono/metabolismo , Respiração Celular/fisiologia , Respiração Celular/efeitos da radiação , Citoplasma/metabolismo , Citoplasma/efeitos da radiação , Estimulação Elétrica , Temperatura Alta , Concentração de Íons de Hidrogênio , Luz , Modelos Biológicos , Pisum sativum/efeitos da radiação , Fotossíntese/efeitos da radiação , Células Vegetais/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
16.
Physiol Plant ; 152(4): 773-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24730552

RESUMO

Electrical signals [action potentials (APs) and variation potentials (VPs)] induced by local stimuli are a mechanism that underlies rapid plant response to environmental factors. Such signals induce a number of functional responses, including changes in photosynthesis. Ultimately, these responses are considered to increase plant resistance to stress factors, but this question has been poorly investigated. We studied the influence of VP on photosynthesis and resistance of the photosynthetic machinery to heating in leaves of pea (Pisum sativum). Localized burning induced a VP that decreased photosynthesis parameters [CO(2) assimilation rate and quantum yields of photosystem I (PSI) and photosystem II (PSII)]. The photosynthetic response was initiated by a decrease in photosynthesis dark-stage activity, which in turn increased resistance of PSI to heating. Three results supported this hypothesized mechanism: (1) the magnitude of VP-induced decrease in CO(2) assimilation and enhanced PSI resistance to heating were highly correlated; (2) the VP influence on PSI resistance to heating was suppressed under a low external CO(2) concentration and (3) decreasing external CO(2) concentration imitated the VP-induced photosynthetic response and increased PSI resistance to heating.


Assuntos
Fotossíntese/fisiologia , Pisum sativum/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Calefação , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
17.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732388

RESUMO

Local actions of stressors induce electrical signals (ESs), influencing photosynthetic processes and probably increasing tolerance to adverse factors in higher plants. However, the participation of well-known depolarization ESs (action potentials and variation potentials) in these responses seems to be rare under natural conditions, particularly in the case of variation potentials, which are induced by extreme stressors (e.g., burning). Earlier, we showed that the local action of moderate heating and illumination can induce low-amplitude hyperpolarization ESs influencing photosynthetic light reactions in wheat plants cultivated in a vegetation room. In the current work, we analyzed ESs and changes in photosynthetic light reactions and drought tolerance that were induced by a combination of moderate heating and illumination in wheat plants cultivated under open-ground conditions. It was shown that the local heating and illumination induced low-amplitude ESs, and the type of signal (depolarization or hyperpolarization) was dependent on distance from the irritated zone and wheat age. Induction of depolarization ESs was not accompanied by photosynthetic changes in plants under favorable conditions or under weak drought. In contrast, the changes were observed after induction of these signals under moderate drought. Increasing drought tolerance was also observed in the last case. Thus, low-amplitude ESs can participate in photosynthetic regulation and increase tolerance to drought in plants cultivated under open-ground conditions.

18.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732477

RESUMO

Approaches for remote sensing can be used to estimate the influence of changes in environmental conditions on terrestrial plants, providing timely protection of their growth, development, and productivity. Different optical methods, including the informative multispectral and hyperspectral imaging of reflected light, can be used for plant remote sensing; however, multispectral and hyperspectral cameras are technically complex and have a high cost. RGB imaging based on the analysis of color images of plants is definitely simpler and more accessible, but using this tool for remote sensing plant characteristics under changeable environmental conditions requires the development of methods to increase its informativity. Our review focused on using RGB imaging for remote sensing the characteristics of terrestrial plants. In this review, we considered different color models, methods of exclusion of background in color images of plant canopies, and various color indices and their relations to characteristics of plants, using regression models, texture analysis, and machine learning for the estimation of these characteristics based on color images, and some approaches to provide transformation of simple color images to hyperspectral and multispectral images. As a whole, our review shows that RGB imaging can be an effective tool for estimating plant characteristics; however, further development of methods to analyze color images of plants is necessary.

19.
J Membr Biol ; 246(4): 287-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23417063

RESUMO

Variation potential (VP), a propagating electrical signal unique to plants, induces a number of changes in many physiological processes. However, the mechanisms of its generation and propagation are still under discussion and require experimental and theoretical analysis, including VP simulations. The mathematical model for VP formation in plants has been worked out and is based on our previous description of electrophysiological processes in higher plant cells, including plasma membrane ion transport systems (K(+), Cl(-) and Ca(2+) channels, H(+) and Ca(2+)-ATPase, 2H(+)/Cl(-) symporter and H(+)/K(+) antiporter) and their regulation, ion concentration changes in cells and extracellular spaces and buffers in cytoplasm and apoplast. In addition, the VP model takes into account wound substance diffusion, which is described by a one-dimensional diffusion equation, and ligand-gated Ca(2+) channels, which are activated by this substance. The VP model simulates the experimental dependence of amplitude, velocity and shape of VP on the distance from the wounding site and describes the influence of metabolic inhibitors, divalent cation chelators and anion channel blockers on the generation of this electrical reaction, as shown in experiments. Thus, our model favorably simulates VP in plants and theoretically supports the role of wound substance diffusion and Ca(2+) influx in VP development.


Assuntos
Células Vegetais/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Cloretos/metabolismo , Modelos Teóricos , Células Vegetais/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Prótons
20.
Plants (Basel) ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765375

RESUMO

Photodamage of photosynthetic electron transport is a key mechanism of disruption of photosynthesis in plants under action of stressors. This means that investigation of photodamage is an important task for basic and applied investigations. However, its complex mechanisms restrict using experimental methods of investigation for this process; the development of mathematical models of photodamage and model-based analysis can be used for overcoming these restrictions. In the current work, we developed the modified Farquhar-von Caemmerer-Berry model which describes photodamage of photosynthetic electron transport in C3 plants. This model was parameterized on the basis of experimental results (using an example of pea plants). Analysis of the model showed that combined inactivation of linear electron flow and Rubisco could induce both increasing and decreasing photodamage at different magnitudes of inactivation of these processes. Simulation of photodamage under different temperatures and light intensities showed that simulated temperature dependences could be multi-phase; particularly, paradoxical increases in the thermal tolerance of photosynthetic electron transport could be observed under high temperatures (37-42 °C). Finally, it was shown that changes in temperature optimums of linear electron flow and Rubisco could modify temperature dependences of the final activity of photosynthetic electron transport under photodamage induction; however, these changes mainly stimulated its photodamage. Thus, our work provides a new theoretical tool for investigation of photodamage of photosynthetic processes in C3 plants and shows that this photodamage can be intricately dependent on parameters of changes in activities of linear electron flow and Rubisco including changes induced by temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA