Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 13(21)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371293

RESUMO

The growth and characterization of an n-GaP/i-GaNP/p+ -GaP thin film heterojunction synthesized using a gas-source molecular beam epitaxy (MBE) method, and its application for efficient solar-driven water oxidation is reported. The TiO2 /Ni passivated n-GaP/i-GaNP/p+ -GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO2 /Ni-coated n-GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm-2 , leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm-2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm-2 for the coated n-GaP and n-GaP/i-GaNP/p+ -GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon-to-current efficiency (ABPE) of 1.9% while the ABPE of the coated n-GaP sample is almost zero. Furthermore, the coated n-GaP/i-GaNP/p+ -GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon-to-current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low-bias performance and broad absorption of the wide-bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.

2.
Nano Lett ; 15(1): 242-7, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25426571

RESUMO

We report on identification and control of important nonradiative recombination centers in GaNP coaxial nanowires (NWs) grown on Si substrates in an effort to significantly increase light emitting efficiency of these novel nanostructures promising for a wide variety of optoelectronic and photonic applications. A point defect complex, labeled as DD1 and consisting of a P atom with a neighboring partner aligned along a crystallographic ⟨ 111 ⟩ axis, is identified by optically detected magnetic resonance as a dominant nonradiative recombination center that resides mainly on the surface of the NWs and partly at the heterointerfaces. The formation of DD1 is found to be promoted by the presence of nitrogen and can be suppressed by reducing the strain between the core and shell layers, as well as by protecting the optically active shell by an outer passivating shell. Growth modes employed during the NW growth are shown to play a role. On the basis of these results, we identify the GaP/GaN(y)P(1-y)/GaN(x)P(1-x) (x < y) core/shell/shell NW structure, where the GaN(y)P(1-y) inner shell with the highest nitrogen content serves as an active light-emitting layer, as the optimized and promising design for efficient light emitters based on GaNP NWs.

3.
Nano Lett ; 15(6): 4052-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25988267

RESUMO

III-V semiconductor nanowires (NWs) have gained significant interest as building blocks in novel nanoscale devices. The one-dimensional (1D) nanostructure architecture allows one to extend band structure engineering beyond quantum confinement effects by utilizing formation of different crystal phases that are thermodynamically unfavorable in bulk materials. It is therefore of crucial importance to understand the influence of variations in the NWs crystal structure on their fundamental physical properties. In this work we investigate effects of structural polytypism on the optical properties of gallium phosphide and GaP/GaNP core/shell NW structures by a correlative investigation on the structural and optical properties of individual NWs. The former is monitored by transmission electron microscopy, whereas the latter is studied via cathodoluminescence (CL) mapping. It is found that structural defects, such as rotational twins in zinc blende (ZB) GaNP, have detrimental effects on light emission intensity at low temperatures by promoting nonradiative recombination processes. On the other hand, formation of the wurtzite (WZ) phase does not notably affect the CL intensity neither in GaP nor in the GaNP alloy. This suggests that zone folding in WZ GaP does not enhance its radiative efficiency, consistent with theoretical predictions. We also show that the change in the lattice structure have negligible effects on the bandgap energies of the GaNP alloys, at least within the range of the investigated nitrogen compositions of <2%. Both WZ and ZB GaNP are found to have a significantly higher efficiency of radiative recombination as compared with that in parental GaP, promising for potential applications of GaNP NWs as efficient nanoscale light emitters within the desirable amber-red spectral range.


Assuntos
Nanofios/química , Gálio/química , Nanofios/ultraestrutura , Zinco/química
4.
Small ; 11(47): 6331-7, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26505738

RESUMO

Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (µ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry.

5.
Nano Lett ; 14(9): 5264-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25162940

RESUMO

The III-V semiconductor nanowires (NWs) have a great potential for applications in a variety of future electronic and photonic devices with enhanced functionality. In this work, we employ polarization-resolved microphotoluminescence (µ-PL) spectroscopy to study polarization properties of light emissions from individual GaNP and GaP/GaNP core/shell NWs with average diameters ranging between 100 and 350 nm. We show that the near-band-edge emission, which originates from the GaNP regions of the NWs, is strongly polarized (up to 60% at 150 K) in the direction perpendicular to the NW axis. The polarization anisotropy can be retained up to room temperature. This polarization behavior, which is unusual for zinc blende NWs, is attributed to local strain in the vicinity of the N-related centers participating in the radiative recombination and to preferential alignment of their principal axis along the growth direction. Our findings therefore show that defect engineering via alloying with nitrogen provides an additional degree of freedom to tailor the polarization anisotropy of III-V nanowires, which is advantageous for their applications as nanoscale emitters of polarized light.

6.
Small ; 10(21): 4403-8, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25045136

RESUMO

Semiconductor nanowires (NWs) have recently gained increasing interest due to their great potential for photovoltaics. A novel material system based on GaNP NWs is considered to be highly suitable for applications in efficient multi-junction and intermediate band solar cells. This work shows that though the bandgap energies of GaN(x)P(1-x) alloys lie within the visible spectral range (i.e., within 540-650 nm for the currently achievable x < 3%), coaxial GaNP NWs grown on Si substrates can also harvest infrared light utilizing energy upconversion. This energy upconversion can be monitored via anti-Stokes near-band-edge photoluminescence (PL) from GaNP, visible even from a single NW. The dominant process responsible for this effect is identified as being due to two-step two-photon absorption (TS-TPA) via a deep level lying at about 1.28 eV above the valence band, based on the measured dependences of the anti-Stokes PL on excitation power and wavelength. The formation of the defect participating in the TS-TPA process is concluded to be promoted by nitrogen incorporation. The revealed defect-mediated TS-TPA process can boost efficiency of harvesting solar energy in GaNP NWs, beneficial for applications of this novel material system in third-generation photovoltaic devices.

7.
Nanoscale Res Lett ; 8(1): 239, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23680085

RESUMO

Recombination processes in GaP/GaNP core/shell nanowires (NWs) grown on Si are studied by employing temperature-dependent continuous wave and time-resolved photoluminescence (PL) spectroscopies. The NWs exhibit bright PL emissions due to radiative carrier recombination in the GaNP shell. Though the radiative efficiency of the NWs is found to decrease with increasing temperature, the PL emission remains intense even at room temperature. Two thermal quenching processes of the PL emission are found to be responsible for the degradation of the PL intensity at elevated temperatures: (a) thermal activation of the localized excitons from the N-related localized states and (b) activation of a competing non-radiative recombination (NRR) process. The activation energy of the latter process is determined as being around 180 meV. NRR is also found to cause a significant decrease of carrier lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA