Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 21(1): e3001647, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634039

RESUMO

The oral microbiome is second only to its intestinal counterpart in diversity and abundance, but its effects on taste cells remains largely unexplored. Using single-cell RNASeq, we found that mouse taste cells, in particular, sweet and umami receptor cells that express taste 1 receptor member 3 (Tas1r3), have a gene expression signature reminiscent of Microfold (M) cells, a central player in immune surveillance in the mucosa-associated lymphoid tissue (MALT) such as those in the Peyer's patch and tonsils. Administration of tumor necrosis factor ligand superfamily member 11 (TNFSF11; also known as RANKL), a growth factor required for differentiation of M cells, dramatically increased M cell proliferation and marker gene expression in the taste papillae and in cultured taste organoids from wild-type (WT) mice. Taste papillae and organoids from knockout mice lacking Spib (SpibKO), a RANKL-regulated transcription factor required for M cell development and regeneration on the other hand, failed to respond to RANKL. Taste papillae from SpibKO mice also showed reduced expression of NF-κB signaling pathway components and proinflammatory cytokines and attracted fewer immune cells. However, lipopolysaccharide-induced expression of cytokines was strongly up-regulated in SpibKO mice compared to their WT counterparts. Like M cells, taste cells from WT but not SpibKO mice readily took up fluorescently labeled microbeads, a proxy for microbial transcytosis. The proportion of taste cell subtypes are unaltered in SpibKO mice; however, they displayed increased attraction to sweet and umami taste stimuli. We propose that taste cells are involved in immune surveillance and may tune their taste responses to microbial signaling and infection.


Assuntos
Papilas Gustativas , Paladar , Animais , Camundongos , Intestinos , Mucosa , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Dev Biol ; 477: 232-240, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097879

RESUMO

In mammals, multiple cell-signaling pathways and transcription factors regulate development of the embryonic taste system and turnover of taste cells in the adult stage. Using single-cell RNA-Seq of mouse taste cells, we found that the homeobox-containing transcription factor Nkx2-2, a target of the Sonic Hedgehog pathway and a key regulator of the development and regeneration of multiple cell types in the body, is highly expressed in type III taste cells but not in type II or taste stem cells. Using in situ hybridization and immunostaining, we confirmed that Nkx2-2 is expressed specifically in type III taste cells in the endoderm-derived circumvallate and foliate taste papillae but not in the ectoderm-derived fungiform papillae. Lineage tracing revealed that Nkx2-2-expressing cells differentiate into type III, but not type II or type I cells in circumvallate and foliate papillae. Neonatal Nkx2-2-knockout mice did not express key type III taste cell marker genes, while the expression of type II and type I taste cell marker genes were unaffected in these mice. Our findings indicate that Nkx2-2-expressing cells are committed to the type III lineage and that Nkx2-2 may be critical for the development of type III taste cells in the posterior tongue, thus illustrating a key difference in the mechanism of type III cell lineage specification between ectoderm- and endoderm-derived taste fields.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Homeodomínio/fisiologia , Papilas Gustativas/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/fisiologia , Contagem de Células , Linhagem da Célula/genética , Feminino , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/biossíntese , Masculino , Camundongos , RNA-Seq , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Proteínas de Peixe-Zebra/biossíntese
3.
PLoS Genet ; 14(2): e1007058, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29415007

RESUMO

Mouse taste receptor cells survive from 3-24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/metabolismo , Proteína Gli3 com Dedos de Zinco/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Papilas Gustativas/citologia , Língua/citologia , Língua/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(21): 6035-40, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162343

RESUMO

The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.


Assuntos
Dissacarídeos/farmacologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Papilas Gustativas/enzimologia , Paladar/fisiologia , alfa-Glucosidases/biossíntese , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , alfa-Glucosidases/genética
5.
Mol Cell ; 37(6): 768-83, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347420

RESUMO

Inhibition of apoptotic response of host cells during an early phase of infection is a strategy used by many enteroinvasive bacterial pathogens to enhance their survival. Here, we report the identification of a soluble form of the pilus protein FimA from the culture supernatants of E. coli K1, Salmonella, and Shigella that can potently inhibit Bax-mediated release of cytochrome c from isolated mitochondria. Similar to the infected cells, HCT116 cells stably expressing FimA display a delay in the integration of Bax into outer mitochondrial membrane induced by apoptotic stimuli. FimA targets to mitochondria through binding to VDAC1, which is a prerequisite step for E. coli K1 to render the short-term blockade of apoptotic death in the host cells. Interestingly, FimA strengthens the VDAC1-hexokinase interaction and prevents dissociation of hexokinase from VDAC1 triggered by apoptotic stimuli. Together, these data thus reveal a paradigm of antiapoptosis mechanism undertaken by the enteroinvasive bacteria.


Assuntos
Apoptose , Enterobacteriaceae/metabolismo , Proteínas de Fímbrias/metabolismo , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Citocromos c/metabolismo , Enterobacteriaceae/química , Enterobacteriaceae/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fímbrias/química , Células HCT116 , Hexoquinase/genética , Humanos , Dados de Sequência Molecular , Pili Sexual/química , Pili Sexual/metabolismo , Ligação Proteica , Salmonella enterica/metabolismo , Alinhamento de Sequência , Shigella flexneri/metabolismo , Transdução de Sinais , Solubilidade , Canal de Ânion 1 Dependente de Voltagem/genética
6.
J Neurosci ; 36(6): 1942-53, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865617

RESUMO

Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This "anion effect" has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT: Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding.


Assuntos
Amilorida/farmacologia , Diuréticos/farmacologia , Cloreto de Sódio , Papilas Gustativas/efeitos dos fármacos , Paladar/efeitos dos fármacos , Animais , Ânions/metabolismo , Celobiose/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Gluconatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osmose , Transdução de Sinais , Papilas Gustativas/citologia
7.
Mol Cell ; 33(1): 15-29, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150424

RESUMO

Although mRNAs of multiple isoforms of Bax, which encodes a central regulator of apoptosis signaling, have been reported, only Baxalpha protein has been well documented and studied. Baxalpha exists in latent form and is activated upon apoptosis induction through conformational changes. Here we demonstrate that Baxbeta protein is ubiquitously present among human cells, but its activity is restricted through stringent regulation by proteasomal degradation. In contrast to Baxalpha, native Baxbeta spontaneously integrates into mitochondrial membrane and is highly potent in inducing cytochrome c release from mitochondria. Remarkably, Baxbeta protein is upregulated by apoptotic stimuli via inhibition of its ubiquitination process, and stable expression of Baxbeta in HCT116-Bax(-/-) cells restores their sensitivity to multiple stimuli. Baxbeta associates with and promotes Baxalpha activation. Moreover, selective knockdown of Baxbeta desensitizes HCT116-Bax(+/-) cells to Bax-dependent apoptosis signaling. These observations underscore the plasticity of human Bax in serving its role as a "gatekeeper" for apoptosis.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Células HCT116 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Peso Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/deficiência
8.
Proc Natl Acad Sci U S A ; 108(13): 5431-6, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21383163

RESUMO

Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Canais KATP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/citologia , Animais , Glibureto/metabolismo , Hipoglicemiantes/metabolismo , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Edulcorantes/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Paladar/fisiologia
9.
PLoS Pathog ; 6(11): e1001203, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21124939

RESUMO

Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa(-/-) mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa(-/-) macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa(-/-) mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/patogenicidade , Macrófagos/metabolismo , Meningite devida a Escherichia coli/etiologia , Meningite devida a Escherichia coli/metabolismo , Receptores de IgG/fisiologia , Animais , Animais Recém-Nascidos , Ligação Competitiva , Western Blotting , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Células COS , Chlorocebus aethiops , Escherichia coli/crescimento & desenvolvimento , Citometria de Fluxo , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoprecipitação , Antígeno de Macrófago 1/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Meningite devida a Escherichia coli/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Fagocitose , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Exp Cell Res ; 315(7): 1313-25, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19100260

RESUMO

Bax, a multi-domain pro-apoptotic Bcl-2 family member, is a key regulator for the release of apoptogenic factors from mitochondria. MOAP-1, which was first isolated from a screen for Bax-associating proteins, interacts with Bax upon apoptotic induction. MOAP-1 is a short-lived protein that is constitutively degraded by the ubiquitin-proteasome system. Apoptotic stimuli upregulate MOAP-1 rapidly through inhibition of its poly-ubiquitination process. However, cellular factors that regulate the stability of MOAP-1 have not yet been identified. In this study, we report the identification of TRIM39 as a MOAP-1-binding protein. TRIM39 belongs to a family of proteins characterized by a Tripartite Motif (TRIM), consisting of RING domain, B-box and coiled-coil domain. Several TRIM family members are known to demonstrate E3 ubiquitin ligase activity. Surprisingly, TRIM39 significantly extends the half-life of MOAP-1 by inhibiting its poly-ubiquitination process. In agreement with its effect on enhancing MOAP-1 stability, TRIM39 sensitizes cells to etoposide-induced apoptosis. Conversely, knockdown of TRIM39 reduces the sensitivity of cells to etoposide-stimulated apoptosis. Furthermore, TRIM39 elevates the level of MOAP-1 in mitochondria and promotes cytochrome c release from isolated mitochondria stimulated by recombinant Bax. Together, these data suggest that TRIM39 can promote apoptosis signalling through stabilization of MOAP-1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Poliubiquitina/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteínas de Transporte/genética , Linhagem Celular , Citocromos c/metabolismo , Humanos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteína X Associada a bcl-2/genética
11.
Sci Rep ; 7(1): 7595, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790351

RESUMO

Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.


Assuntos
Regulação da Expressão Gênica , Papilas Gustativas/metabolismo , Paladar/fisiologia , Transcriptoma , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antígeno CD56/genética , Antígeno CD56/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-fes/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Transmissão Sináptica/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Papilas Gustativas/citologia , Sequenciamento do Exoma
12.
Cell Rep ; 16(1): 174-185, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320914

RESUMO

Fas apoptotic signaling regulates diverse physiological processes. Acute activation of Fas signaling triggers massive apoptosis in liver. Upon Fas receptor stimulation, the BH3-only protein Bid is cleaved into the active form, tBid. Subsequent tBid recruitment to mitochondria, which is facilitated by its receptor MTCH2 at the outer mitochondrial membrane (OMM), is a critical step for commitment to apoptosis via the effector proteins Bax or Bak. MOAP-1 is a Bax-binding protein enriched at the OMM. Here, we show that MOAP-1-deficient mice are resistant to Fas-induced hepatocellular apoptosis and lethality. In the absence of MOAP-1, mitochondrial accumulation of tBid is markedly impaired. MOAP-1 binds to MTCH2, and this interaction appears necessary for MTCH2 to engage tBid. These findings reveal a role for MOAP-1 in Fas signaling in the liver by promoting MTCH2-mediated tBid recruitment to mitochondria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Fígado/citologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Receptor fas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/deficiência , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HCT116 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ligação Proteica
13.
Anticancer Res ; 35(1): 229-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550555

RESUMO

AIM: Histone deacetylase (HDAC) inhibitors are a class of drugs that modulate transcriptional activity in cells and are known to induce cell-cycle arrest and angiogenesis, the major components of tumor cell proliferation. The aim of the present study was to characterize a novel hydroxamic acid-based HDAC inhibitor, PAT-1102, and determine its efficacy and tolerability in pre-clinical models. MATERIALS AND METHODS: HDAC enzyme inhibition was measured using HeLa cell nuclear extracts, and recombinant HDAC enzymes. Antiproliferative activity was assessed in a panel of cancer cell lines. Histone hyper-acetylation status and p21 induction were assessed in HeLa cells by immunoblotting. The effect on apoptosis was tested by caspase-3 activation and detection of cleaved poly-ADP ribose polymerase (PARP). Single-dose pharmacokinetics of the compound were assessed in BALB/c mice following oral and intravenous administration. Antitumor efficacy was evaluated in tumor-bearing mice established from lung and colorectal cancer cells (A549 and HCT116, respectively). RESULTS: PAT-1102 demonstrated potent HDAC-inhibitory activity and growth-inhibitory properties against a panel of cancer cell lines. The optimized compound PAT-1102 exhibits good aqueous solubility, metabolic stability and a favorable pharmacokinetic profile. Once-daily oral administration of PAT-1102 resulted in significant antitumor activity and was well-tolerated in mice. CONCLUSION: Our results indicate that PAT-1102 is a novel, potent, orally available HDAC inhibitor with antiproliferative activity against several human cancer cell lines and antitumor activity in mouse xenograft models. Based on the pre-clinical efficacy and safety profile of PAT-1102, the compound demonstrates significant potential for evaluation as a novel drug candidate for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Triazóis/administração & dosagem , Administração Oral , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Células HCT116 , Células HeLa , Inibidores de Histona Desacetilases/farmacocinética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ácidos Hidroxâmicos/farmacocinética , Concentração Inibidora 50 , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Triazóis/farmacocinética , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Proc Natl Acad Sci U S A ; 104(24): 10051-6, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17535899

RESUMO

The multidomain proapoptotic protein Bax of the Bcl-2 family is a central regulator for controlling the release of apoptogenic factors from mitochondria. Recent evidence suggests that the Bax-associating protein MOAP-1 may act as an effector for promoting Bax function in mitochondria. Here, we report that MOAP-1 protein is rapidly up-regulated by multiple apoptotic stimuli in mammalian cells. MOAP-1 is a short-lived protein (t(1/2) approximately 25 min) that is constitutively degraded by the ubiquitin-proteasome system. Induction of MOAP-1 by apoptotic stimuli ensues through inhibition of its polyubiquitination process. Elevation of MOAP-1 levels sensitizes cells to apoptotic stimuli and promotes recombinant Bax-mediated cytochrome c release from isolated mitochondria. Mitochondria depleted of short-lived proteins by cycloheximide (CHX) become resistant to Bax-mediated cytochrome c release. Remarkably, incubation of these mitochondria with in vitro-translated MOAP-1 effectively restores the cytochrome c releasing effect of recombinant Bax. We propose that apoptotic stimuli can facilitate the proapoptotic function of Bax in mitochondria through stabilization of MOAP-1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/fisiologia , Mitocôndrias/metabolismo , Ubiquitina/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HCT116 , Meia-Vida , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes/metabolismo , Proteína X Associada a bcl-2/genética
15.
Proc Natl Acad Sci U S A ; 102(41): 14623-8, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16199525

RESUMO

Apoptotic stimuli induce conformational changes in Bax and trigger its translocation from cytosol to mitochondria. Upon assembling into the mitochondrial membrane, Bax initiates a death program through a series of events, culminating in the release of apoptogenic factors such as cytochrome c. Although it is known that Bax is one of the key factors for integrating multiple death signals, the mechanism by which Bax functions in mitochondria remains controversial. We have previously identified modulator of apoptosis-1 (MAP-1) as a Bax-associating protein, but its functional relationship with Bax in contributing to apoptosis regulation remains to be established. In this study, we show that MAP-1 is a critical mitochondrial effector of Bax. MAP-1 is a mitochondria-enriched protein that associates with Bax only upon apoptotic induction, which coincides with the release of cytochrome c from mitochondria. Small interfering RNAs that diminish MAP-1 levels in mammalian cell lines confer selective inhibition of Bax-mediated apoptosis. Mammalian cells with stable expression of MAP-1 small interfering RNAs are resistant to multiple apoptotic stimuli in triggering apoptotic death as well as in inducing conformation change and translocation of Bax. Similar to Bax-deficient cells, MAP-1-deficient cells exhibit aggressive anchorage-independent growth. Remarkably, recombinant Bax- or tBid-mediated release of cytochrome c from isolated mitochondria is significantly compromised in the MAP-1 knockdown cells. We propose that MAP-1 is a direct mitochondrial target of Bax.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Proteína X Associada a bcl-2/metabolismo , Animais , Fracionamento Celular , Citocromos c/metabolismo , Fibroblastos , Técnica Indireta de Fluorescência para Anticorpo , Immunoblotting , Imunoprecipitação , Camundongos , Interferência de RNA , RNA Interferente Pequeno/metabolismo
16.
J Biol Chem ; 277(14): 12253-62, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11805101

RESUMO

Escherichia coli is one of the most important pathogens involved in the development of neonatal meningitis in many parts of the world. Traversal of E. coli across the blood-brain barrier is a crucial event in the pathogenesis of E. coli meningitis. Our previous studies have shown that outer membrane protein A (OmpA) expression is necessary in E. coli for a mechanism involving actin filaments in its passage through the endothelial cells. Focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) have also been activated in host cells during the process of invasion. In an attempt to elucidate the mechanisms leading to actin filament condensation, we have focused our attention on protein kinase C (PKC), an enzyme central to many signaling events, including actin rearrangement. In the current study, specific PKC inhibitors, bisindolmaleimide and a PKC-inhibitory peptide, inhibited E. coli invasion of human brain microvascular endothelial cells (HBMEC) by more than 75% in a dose-dependent manner, indicating a significant role played by this enzyme in the invasion process. Our results further showed that OmpA+ E. coli induces significant activation of PKC in HBMEC as measured by the PepTag nonradioactive assay. In addition, we identified that the PKC isoform activated in E. coli invasion is a member of the conventional family of PKC, PKC-alpha, which requires calcium for activation. Immunocytochemical studies have indicated that the activated PKC-alpha is associated with actin condensation beneath the bacterial entry site. Overexpression of a dominant negative mutant of PKC-alpha in HBMEC abolished the E. coli invasion without significant changes in FAK phosphorylation or PI3K activity patterns. In contrast, in HBMEC overexpressing the mutant forms of either FAK or PI3K, E. coli-induced PKC activation was significantly blocked. Furthermore, our studies showed that activation of PKC-alpha induces the translocation of myristoylated alanine-rich protein kinase C substrate, an actin cross-linking protein and a substrate for PKC-alpha, from the membrane to cytosol. This is the first report of FAK- and PI3K-dependent PKC-alpha activation in bacterial invasion related to cytoskeletal reorganization.


Assuntos
Encéfalo/irrigação sanguínea , Endotélio Vascular/enzimologia , Escherichia coli/patogenicidade , Regulação da Expressão Gênica , Microcirculação/enzimologia , Proteína Quinase C/metabolismo , Actinas/metabolismo , Alanina/química , Sítios de Ligação , Western Blotting , Células Cultivadas , Cromonas/farmacologia , Citosol/metabolismo , Relação Dose-Resposta a Droga , Ácido Egtázico/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Genes Dominantes , Humanos , Isoenzimas/metabolismo , Microscopia de Fluorescência , Morfolinas/farmacologia , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Testes de Precipitina , Ligação Proteica , Isoformas de Proteínas , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C-alfa , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , Espectrofotometria , Fatores de Tempo , Transfecção
17.
J Infect Dis ; 188(9): 1295-309, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14593586

RESUMO

We investigated the permeability changes that occur in the human brain microvascular endothelial cell (HBMEC) monolayer, an in vitro model of the blood-brain barrier, during Escherichia coli K1 infection. An increase in permeability of HBMECs and a decrease in transendothelial electrical resistance were observed. These permeability changes occurred only when HBMECs were infected with E. coli expressing outer membrane protein A (OmpA) and preceded the traversal of bacteria across the monolayer. Activated protein kinase C (PKC)-alpha interacts with vascular-endothelial cadherins (VECs) at the tight junctions of HBMECs, resulting in the dissociation of beta-catenins from VECs and leading to the increased permeability of the HBMEC monolayer. Overexpression of a dominant negative form of PKC-alpha in HBMECs blocked the E. coli-induced increase in permeability of HBMECs. Anti-OmpA and anti-OmpA receptor antibodies exerted inhibition of E. coli-induced permeability of HBMEC monolayers. This inhibition was the result of the absence of PKC-alpha activation in HBMECs treated with the antibodies.


Assuntos
Barreira Hematoencefálica/microbiologia , Encefalopatias/microbiologia , Encefalopatias/patologia , Encéfalo/irrigação sanguínea , Endotélio Vascular/microbiologia , Infecções por Escherichia coli/patologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Barreira Hematoencefálica/patologia , Western Blotting , Caderinas/fisiologia , Permeabilidade Capilar , Impedância Elétrica , Endotélio Vascular/patologia , Escherichia coli/fisiologia , Humanos , Microscopia de Fluorescência , Testes de Precipitina , Proteína Quinase C/fisiologia , Proteína Quinase C-alfa , Junções Íntimas/microbiologia
18.
Infect Immun ; 72(10): 6012-22, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15385505

RESUMO

Escherichia coli K1 survival in the blood is a critical step for the onset of meningitis in neonates. Therefore, the circulating bacteria are impelled to avoid host defense mechanisms by finding a niche to survive and multiply. Our recent studies have shown that E. coli K1 enters and survives in both monocytes and macrophages in the newborn rat model of meningitis as well as in macrophage cell lines. Here we demonstrate that E. coli K1 not only extends the survival of human and murine infected macrophage cell lines but also renders them resistant to apoptosis induced by staurosporine. Macrophages infected with wild-type E. coli expressing outer membrane protein A (OmpA), but not with OmpA- E. coli, are resistant to DNA fragmentation and phosphatidylserine exposure induced by staurosporine. Infection with OmpA+ E. coli induces the expression of Bcl(XL), an antiapoptotic protein, both at the mRNA level as assessed by gene array analysis and at the protein level as evaluated by immunoblotting. OmpA- E. coli infection of macrophages induced the release of cytochrome c from mitochondria into the cytosol and the activation of caspases 3, 6, and 9, events that were significantly blocked in OmpA+ E. coli-infected macrophages. In addition, OmpA+ E. coli-infected cells were resistant to a decrease in the transmembrane potential of mitochondria induced by staurosporine as measured by the MitoCapture fluorescence technique. Complementation of OmpA- E. coli with a plasmid containing the ompA gene restored the ability of OmpA- E. coli to inhibit the apoptosis of infected macrophages, further demonstrating that E. coli OmpA expression is critical for inducing macrophage survival and thereby finding a safe haven for its growth.


Assuntos
Apoptose , Citocromos c/metabolismo , Escherichia coli/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular , Ativação Enzimática , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Teste de Complementação Genética , Humanos , Macrófagos/citologia , Camundongos , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2 , Proteína bcl-X
19.
Infect Immun ; 71(10): 5951-61, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14500515

RESUMO

Interactions between Escherichia coli K1, which causes meningitis in neonates, and macrophages have not been explored well. In this study we found that E. coli K1 was able to enter, survive, and replicate intracellularly in both murine and human macrophage cell lines, as well as in monocytes and macrophages of newborn rats. In addition, we demonstrated that OmpA (+) E. coli also enters and replicates in human peripheral blood monocytes in vitro. Outer membrane protein A (OmpA) expression on E. coli contributes to binding to macrophages, phagocytosis, and survival within macrophages. Opsonization with either complement proteins or antibody is not required for uptake and survival of the bacteria within the macrophages. Transmission electron microscopy and immunocytochemistry studies with the infected macrophages indicated that OmpA(+) E. coli multiplies enormously in a single phagosome and bursts the cell. Internalization of OmpA(+) E. coli by RAW 264.7 cells occurred by both actin- and microtubule-dependent processes, which are independent of RGD-mediated integrin receptors. Internalization and intracellular survival within phagocytic cells thus may play an important role in the development of bacteremia, which is crucial for E. coli crossing of the blood-brain barrier.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/patogenicidade , Macrófagos/microbiologia , Animais , Animais Recém-Nascidos , Bacteriemia/etiologia , Linhagem Celular , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Infecções por Escherichia coli/etiologia , Humanos , Macrófagos/imunologia , Macrófagos/ultraestrutura , Meningite devida a Escherichia coli/etiologia , Camundongos , Microscopia Eletrônica , Monócitos/imunologia , Monócitos/microbiologia , Proteínas Opsonizantes , Fagocitose , Ratos
20.
J Biol Chem ; 277(52): 50716-24, 2002 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-12386163

RESUMO

The morbidity and mortality associated with Escherichia coli K1 meningitis during the neonatal period have remained significant over the last decade and are once again on the rise. Transcytosis of brain microvascular endothelial cells (BMEC) by E. coli within an endosome to avoid lysosomal fusion is crucial for dissemination into the central nervous system. Central to E. coli internalization of BMEC is the expression of OmpA (outer membrane protein A), which interacts with its receptor for the actin reorganization that leads to invasion. However, nothing is known about the nature of the signaling events for the formation of endosomes containing E. coli K1. We show here that E. coli K1 infection of human BMEC (HBMEC) results in activation of caveolin-1 for bacterial uptake via caveolae. The interaction of caveolin-1 with phosphorylated protein kinase Calpha (PKCalpha) at the E. coli attachment site is critical for the invasion of HBMEC. Optical sectioning of confocal images of infected HBMEC indicates continuing association of caveolin-1 with E. coli during transcytosis. Overexpression of a dominant-negative form of caveolin-1 containing mutations in the scaffolding domain blocked the interaction of phospho-PKCalpha with caveolin-1 and the E. coli invasion of HBMEC, but not actin cytoskeleton rearrangement or the phosphorylation of PKCalpha. The interaction of caveolin-1 with phospho-PKCalpha was completely abrogated in HBMEC overexpressing dominant-negative forms of either focal adhesion kinase or PKCalpha. Treatment of HBMEC with a cell-permeable peptide that represents the scaffolding domain, which was coupled to an antennapedia motif of a Drosophila transcription factor significantly blocked the interaction of caveolin-1 with phospho-PKCalpha and E. coli invasion. These results show that E. coli K1 internalizes HBMEC via caveolae and that the scaffolding domain of caveolin-1 plays a significant role in the formation of endosomes.


Assuntos
Cavéolas/fisiologia , Caveolinas/metabolismo , Circulação Cerebrovascular/fisiologia , Endotélio Vascular/microbiologia , Escherichia coli/fisiologia , Isoenzimas/metabolismo , Microcirculação/fisiologia , Proteína Quinase C/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Proteína do Homeodomínio de Antennapedia , Encéfalo/irrigação sanguínea , Caveolina 1 , Endossomos/fisiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/fisiopatologia , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína Quinase C-alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA