Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 313(6): C621-C631, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835434

RESUMO

Muscle stretch activation (SA) is critical for optimal cardiac and insect indirect flight muscle (IFM) power generation. The SA mechanism has been investigated for decades with many theories proposed, but none proven. One reason for the slow progress could be that multiple SA mechanisms may have evolved in multiple species or muscle types. Laboratories studying IFM SA in the same or different species have reported differing SA functional properties which would, if true, suggest divergent mechanisms. However, these conflicting results might be due to different experimental methodologies. Thus, we directly compared SA characteristics of IFMs from two SA model systems, Drosophila and Lethocerus, using two different fiber bathing solutions. Compared with Drosophila IFM, Lethocerus IFM isometric tension is 10- or 17-fold higher and SA tension was 5- or 10-fold higher, depending on the bathing solution. However, the rate of SA tension generation was 9-fold faster for Drosophila IFM. The inverse differences between rate and tension in the two species causes maximum power output to be similar, where Drosophila power is optimized in the bathing solution that favors faster muscle kinetics and Lethocerus in the solution that favors greater tension generation. We found that isometric tension and SA tension increased with calcium concentration for both species in both solutions, reaching a maximum plateau around pCa 5.0. Our results favor a similar mechanism for both species, perhaps involving a troponin complex that does not fully calcium activate the thin filament thus leaving room for further tension generation by SA.


Assuntos
Cálcio/metabolismo , Drosophila/fisiologia , Voo Animal/fisiologia , Heterópteros/fisiologia , Contração Muscular/fisiologia , Tono Muscular/fisiologia , Animais , Músculos/fisiologia , Sarcômeros
2.
Toxicol Pathol ; 33(3): 343-55, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15805072

RESUMO

A vast majority of pharmacological compounds and their metabolites are excreted via the urine, and within the complex structure of the kidney,the proximal tubules are a main target site of nephrotoxic compounds. We used the model nephrotoxicants mercuric chloride, 2-bromoethylamine hydrobromide, hexachlorobutadiene, mitomycin, amphotericin, and puromycin to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. Male Sprague-Dawley rats were dosed via intraperitoneal injection once daily for mercuric chloride and amphotericin (up to 7 doses), while a single dose was given for all other compounds. Animals were exposed to 2 different doses of these compounds and kidney tissues were collected on day 1, 3, and 7 postdosing. Gene expression profiles were generated from kidney RNA using 17K rat cDNA dual dye microarray and analyzed in conjunction with histopathology. Analysis of gene expression profiles showed that the profiles clustered based on similarities in the severity and type of pathology of individual animals. Further, the expression changes were indicative of tubular toxicity showing hallmarks of tubular degeneration/regeneration and necrosis. Use of gene expression data in predicting the type of nephrotoxicity was then tested with a support vector machine (SVM)-based approach. A SVM prediction module was trained using 120 profiles of total profiles divided into four classes based on the severity of pathology and clustering. Although mitomycin C and amphotericin B treatments did not cause toxicity, their expression profiles were included in the SVM prediction module to increase the sample size. Using this classifier, the SVM predicted the type of pathology of 28 test profiles with 100% selectivity and 82% sensitivity. These data indicate that valid predictions could be made based on gene expression changes from a small set of expression profiles. A set of potential biomarkers showing a time- and dose-response with respect to the progression of proximal tubular toxicity were identified. These include several transporters (Slc21a2, Slc15, Slc34a2), Kim 1, IGFbp-1, osteopontin, alpha-fibrinogen, and Gstalpha.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Perfilação da Expressão Gênica , Marcadores Genéticos , Rim/efeitos dos fármacos , Rim/patologia , Análise em Microsséries , Animais , Antibióticos Antineoplásicos/toxicidade , Butadienos/toxicidade , Desinfetantes/toxicidade , Relação Dose-Resposta a Droga , Etilaminas/toxicidade , Fungicidas Industriais/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Cloreto de Mercúrio/toxicidade , Valor Preditivo dos Testes , Puromicina Aminonucleosídeo/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Toxicogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA