Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 23(10): e13745, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018627

RESUMO

PURPOSE: The Task Group 218 (TG-218) report was published by the American Association of Physicists in Medicine in 2018, recommending the appropriate use of gamma index analysis for patient-specific quality assurance (PSQA). The paper demonstrates that PSQA for radiotherapy in Japan appropriately applies the gamma index analysis considering TG-218. MATERIALS/METHODS: This survey estimated the acceptance state of radiotherapeutic institutes or facilities in Japan for the guideline using a web-based questionnaire. To investigate an appropriate PSQA of the facility-specific conditions, we researched an optimal tolerance or action level for various clinical situations, including different treatment machines, clinical policies, measurement devices, staff or their skills, and patient conditions. The responded data were analyzed using principal component analysis (PCA) and multidimensional scaling (MDS). The PCA focused on factor loading values of the first contribution over 0.5, whereas the MDS focused on mapped distances among data. RESULTS: Responses were obtained from 148 facilities that use intensity-modulated radiation therapy (IMRT), which accounted for 42.8% of the probable IMRT use in Japan. This survey revealed the appropriate application of the following universal criteria for gamma index analysis from the guideline recommendation despite the facility-specific variations (treatment machines/the number of IMRT cases/facility attributes/responded [representative] expertise or staff): (a) 95% pass rate, (b) 3% dose difference and 2-mm distance-to-agreement, and (c) 10% threshold dose. Conditions (a)-(c) were the principal components of the data by the PCA method and were mapped in a similar distance range, which was easily clustered from other gamma index analytic factors by the MDS method. Conditions (a)-(c) were the universally essential factors for the PSQA in Japan. CONCLUSION: We found that the majority of facilities using IMRT in each region of Japan complied with the guideline and conducted PSQA with deliberation under the individual facility-specific conditions.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Japão , Garantia da Qualidade dos Cuidados de Saúde , Radioterapia de Intensidade Modulada/métodos
2.
Acta Oncol ; 59(3): 274-283, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31755332

RESUMO

Background: This study aimed to evaluate knowledge-based volume modulated arc therapy (VMAT) plans for oesophageal cancers using a model trained with plans optimised with a different treatment planning system (TPS) and to compare lung dose sparing in two TPSs, Eclipse and RayStation.Materials and methods: A total of 64 patients with stage I-III oesophageal cancers were treated using hybrid VMAT (H-VMAT) plans optimised using RayStation. Among them, 40 plans were used for training the model for knowledge-based planning (KBP) in RapidPlan. The remaining 24 plans were recalculated using RapidPlan to validate the KBP model. H-VMAT plans calculated using RapidPlan were compared with H-VMAT plans optimised using RayStation with respect to planning target volume doses, lung doses, and modulation complexity.Results: In the lung, there were significant differences between the volume ratios receiving doses in excess of 5, 10, and 20 Gy (V5, V10, and V20). The V5 for the lung with H-VMAT plans optimised using RapidPlan was significantly higher than that of H-VMAT plans optimised using RayStation (p < .01), with a mean difference of 10%. Compared to H-VMAT plans optimised using RayStation, the V10 and V20 for the lung were significantly lower with H-VMAT plans optimised using RapidPlan (p = .04 and p = .02), with differences exceeding 1.0%. In terms of modulation complexity, the change in beam output at each control point was more constant with H-VMAT plans optimised using RapidPlan than with H-VMAT plans optimised using RayStation. The range of the change with H-VMAT plans optimised using RapidPlan was one third that of H-VMAT plans optimised using RayStation.Conclusion: Two optimisers in Eclipse and RayStation had different dosimetric performance in lung sparing and modulation complexity. RapidPlan could not improve low lung doses, however, it provided an appreciate intermediated doses compared to plans optimised with RayStation.


Assuntos
Neoplasias Esofágicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Radiometria , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 21(11): 153-162, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33058408

RESUMO

PURPOSE: To investigate the detectability of fiducial markers' positions for real-time target tracking system equipping with a standard linac. The hypothesis is that the detectability depends on the type of fiducial marker and the gantry angle of acquired triggered images. METHODS: Three types of ball fiducials and four slim fiducials with lengths of 3 and 5 mm were prepared for this study. Triggered images with three similar fiducials were acquired at every 10° during the conformal arc irradiation to detect the target position. Although only one type of arrangement was prepared for the ball fiducials, a three-type arrangement was prepared for the slim fiducials, such as parallel, orthogonal, and oblique with 45° to the gantry-couch direction. To measure the detectability of the real-time target tracking system for each fiducial and arrangement, detected marker positions were compared with expected marker positions at every angle of acquired triggered images. RESULTS: For the ball-type fiducial, the maximum difference between the detected marker positions and expected marker positions was 0.3 mm in all directions. For the slim fiducial arranged parallel and oblique with 45°, the maximum difference was 0.4 mm in all directions. When each slim fiducial was arranged orthogonal to the gantry-couch direction, the maximum difference was 1.5 mm for the length of 3 mm, and 3.2 mm for the length of 5 mm. CONCLUSIONS: The detectability of fiducial markers' positions for the real-time target tracking system equipping with a standard linac depends on the form and insertion angles of the fiducials.


Assuntos
Marcadores Fiduciais , Radioterapia Conformacional , Sistemas Computacionais , Humanos
4.
Rep Pract Oncol Radiother ; 25(6): 1023-1028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390859

RESUMO

BACKGROUND: The aim of this study was to clarify factors predicting the performance of knowledge-based planning (KBP) models in volume modulated arc therapy for prostate cancer in terms of sparing the organ at risk (OAR). MATERIALS AND METHODS: In three institutions, each KBP model was trained by more than 20 library plans (LP) per model. To validate the characterization of each KBP model, 45 validation plans (VP) were calculated by the KBP system. The ratios of overlap between the OAR volume and the planning target volume (PTV) to the whole organ volume (Voverlap/Vwhole) were analyzed for each LP and VP. Regression lines between dose-volume parameters (V90, V75, and V50) and Voverlap/Vwhole were evaluated. The mean OAR dose, V90, V75, and V50 of LP did not necessarily match those of VP. RESULTS: In both the rectum and bladder, the dose-volume parameters for VP were strongly correlated with Voverlap/Vwhole at institutes A, B, and C (R > 0.74, 0.85, and 0.56, respectively). Except in the rectum at institute B, the slopes of the regression lines for LP corresponded to those for VP. For dose-volume parameters for the rectum, the ratios of slopes of the regression lines in VP to those in LP ranged 0.51-1.26. In the bladder, most ratios were less than 1.0 (mean: 0.77). CONCLUSION: For each OAR, each model made distinct dosimetric characterizations in terms of Voverlap/Vwhole. The relationship between dose-volume parameters and Voverlap/Vwhole of OARs in LP predicts the KBP models' performance sparing OARs.

5.
J Appl Clin Med Phys ; 19(5): 428-434, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959815

RESUMO

PURPOSE: The major errors in HDR brachytherapy are related to treatment distance, almost all of which are caused by incorrect applicator information. The aim of this study is to propose a quick pretreatment verification method to evaluate channel length and dwell position with a transparent applicator, which, in addition, is suitable as an education tool to assist in the understanding of the applicator structure. METHODS: A transparent applicator model was fabricated using a three-dimensional printer and transparent resin. Its aim is to be a replica of a real gynecological applicator. The pretreatment verification is performed by observing the planned dwell positions of a check cable inside a transparent applicator. A digital camera acquired images and the dwell positions of the radioactive source and check cable were evaluated by comparing them with respect to the theoretical dwell positions marked by the proper x-ray marker. The potential effectiveness of verification using a transparent applicator was also evaluated using brachytherapy events reported in the literature. RESULTS: The transparent applicator closely resembles the real applicator in shape and had an error of less than 0.2 mm. The average dwell position displacement between the radioactive source and check cable was 0.4 mm. The analysis of brachytherapy events showed that channel-length, dwell-position, and step-size errors made up 50% of all events, but affected 64% of all patients. CONCLUSIONS: The transparent applicator model enables a noninvasive, repeatable verification of the channel length and dwell positions to be performed before treatment. This verification has the potential to help prevent common errors in treatment delivery. In addition, the transparent applicator model can be used as a teaching tool to help clinicians understand the operation of the applicator, lowering the risk of events.


Assuntos
Braquiterapia , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Rep Pract Oncol Radiother ; 23(5): 425-432, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197578

RESUMO

AIM: To evaluate the influence of the beam shape created by X-rays with "flat beams" and without "flattening-filter-free [FFF] beams" a flattening filter, and the isocenter locations for FFF beams on the treatment of a large irradiated volume for tumours. BACKGROUND: The increase of dose rate and the decrease of out-of-field dose can be expected for FFF beams and lead to effective and safety radiotherapy. On the other hand, the bell-shaped dose profile is thought to be a factor of negating these advantages. MATERIALS AND METHODS: Treatment plans for 15 patients with head and neck cancer were created using XiO (Elekta, Stockholm AB, Sweden) in fixed-gantry step-and-shoot delivery under the same dose constraints. Seven fields of FFF beams with 7 MV and flat beams with 6 MV were used with the technique of intensity-modulated radiation therapy (IMRT). We compared the dose homogeneity and conformity of targets and dose constraints for organs as the plan quality and evaluated physical parameters: monitor unit (MU) values, number of segments and their locations from the isocenter in beam's-eye-view. RESULTS: No significant differences were found in the plan quality. The isocenter locations do not affect the physical parameters for FFF beams. It has been confirmed that the number of segments and MU values were 40% higher with FFF beams than with flat beams (p < 0.05). CONCLUSION: This study demonstrates flat dose distribution is more suitable for IMRT with large and complex targets.

7.
Int J Clin Oncol ; 21(6): 1030-1037, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27306220

RESUMO

BACKGROUND: Phase I study of weekly administration of low-dose docetaxel/cisplatin concurrent with conventionally fractionated radiotherapy for locally advanced head and neck squamous cell carcinoma suggested the recommended dose of docetaxel at 10 mg/m2 and cisplatin at 20 mg/m2. Phase II study of the concurrent chemoradiotherapy for technically resectable disease showed satisfactory results. METHODS: This phase II study was designed to address efficacy and safety when patients with technically unresectable disease were treated with concurrent chemoradiotherapy, followed by two cycles of moderate-dose platinum-based adjuvant chemotherapy: docetaxel, cisplatin, and fluorouracil (modified TPF). Modified TPF was replaced with docetaxel/carboplatin when renal impairment became evident. Surgical salvage was considered when residual or recurrent locoregional disease was technically resectable and free of distant metastasis. RESULTS: Of 33 enrolled patients, 31 were analyzable: 24 (78 %) and 18 (58 %) patients completed chemoradiotherapy and adjuvant chemotherapy, respectively; 15 (48 %) patients completed study treatment per protocol, and overall complete response rate was 45 %. Seven patients underwent surgical salvage, which was successful in 4 patients. At a median follow-up of 60.8 months for surviving patients, median progression-free survival and median overall survival were 16.2 and 39.9 months, respectively. Grade 3 or 4 toxicity included mucositis (77 %) and dysphagia (45 %) during the chemoradiotherapy period and neutropenia (100 %) and febrile neutropenia (35 %) during the adjuvant period. No patient died of toxicity. CONCLUSION: The tested regimen seems effective, although there is room for improvement in adjuvant chemotherapy because of the high toxicity and low compliance of modified TPF.


Assuntos
Carcinoma de Células Escamosas , Cisplatino , Neoplasias de Cabeça e Pescoço , Platina , Taxoides , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Quimioterapia Adjuvante/efeitos adversos , Quimioterapia Adjuvante/métodos , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Docetaxel , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neutropenia/diagnóstico , Neutropenia/etiologia , Avaliação de Processos e Resultados em Cuidados de Saúde , Platina/administração & dosagem , Platina/efeitos adversos , Indução de Remissão/métodos , Terapia de Salvação/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Taxoides/administração & dosagem , Taxoides/efeitos adversos
8.
J Appl Clin Med Phys ; 17(2): 74-84, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074474

RESUMO

Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.


Assuntos
Algoritmos , Calibragem , Neoplasias/cirurgia , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Marcadores Fiduciais , Humanos , Pulmão/fisiopatologia , Pulmão/efeitos da radiação , Movimento , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Respiração , Gravação em Vídeo
9.
J Appl Clin Med Phys ; 17(1): 259-271, 2016 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-26894363

RESUMO

Patient-specific quality assurance for intensity-modulated radiation therapy (IMRT) dose verification is essential. The aim of this study is to provide a new method based on the relative error distribution by comparing the fluence map from the treatment planning system (TPS) and the incident fluence deconvolved from the electronic portal imaging device (EPID) images. This method is validated for 10 head and neck IMRT cases. The fluence map of each beam was exported from the TPS and EPID images of the treatment beams were acquired. Measured EPID images were deconvolved to the incident fluence with proper corrections. The relative error distribution between the TPS fluence map and the incident fluence from the EPID was created. This was also created for a 2D diode array detector. The absolute point dose was measured with an ionization chamber, and the dose distribution was measured by a radiochromic film. In three cases, MLC leaf positions were intentionally changed to create the dose error as much as 5% against the planned dose and our fluence-based method was tested using gamma index. Absolute errors between the predicted dose of 2D diode detector and of our method and measurements were 1.26% ± 0.65% and 0.78% ± 0.81% respectively. The gamma passing rate (3% global / 3 mm) of the TPS was higher than that of the 2D diode detector (p< 0.02), and lower than that of the EPID (p < 0.04). The gamma passing rate (2% global / 2 mm) of the TPS was higher than that of the 2D diode detector, while the gamma passing rate of the TPS was lower than that of EPID (p < 0.02). For three modified plans, the predicted dose errors against the measured dose were 1.10%, 2.14%, and -0.87%. The predicted dose distributions from the EPID were well matched to the measurements. Our fluence-based method provides very accurate dosimetry for IMRT patients. The method is simple and can be adapted to any clinic for complex cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/instrumentação , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias/patologia , Dosagem Radioterapêutica
10.
J Appl Clin Med Phys ; 16(3): 5374, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103496

RESUMO

The presence of dental metals creates radiation dose perturbation due to scattered radiation during radiation therapy for the head and neck region. The purpose of our study was to compare the scatter doses resulting from various dental metals in the direction of the buccal mucosa among a single-field technique, three-dimensional conformal radiation therapy (3D CRT), and intensity-modulated radiation therapy (IMRT) during radiation therapy for the head and neck region. We used nine metal cubes with 10 mm sides, which were placed inside a water phantom. The scatter doses from the cubes in the direction of the buccal mucosa were measured using radiochromic films. The films were placed perpendicularly to the surface of the cubes. The phantom was irradiated with a 4 MV photon energy by a linear accelerator for all techniques. In the single-field technique, the scatter doses from dental metals showed 3.7%-19.3% dose increases, and gold showed the largest dose increase. In 3D CRT, the scatter doses from dental metals showed 1.4%-6.9% dose increases, which were within the measurement uncertainty (except for gold). In IMRT, the scatter doses from dental metals showed only 1.4%-4.3% dose increases, which were all within the measurement uncertainty. During radiation therapy for the head and neck region, the scatter doses from the tested dental metals in the direction of the buccal mucosa in 3D CRT or IMRT were lower than those using the single-field technique. However, there were no differences between the scatter doses resulting from particular dental metals in the direction of the buccal mucosa in 3D CRT and those in IMRT, except for gold.


Assuntos
Materiais Dentários , Dosimetria Fotográfica/métodos , Metais , Mucosa Bucal/fisiologia , Radioterapia de Intensidade Modulada/métodos , Espalhamento de Radiação , Implantes Dentários , Humanos , Teste de Materiais , Mucosa Bucal/efeitos da radiação , Órgãos em Risco/efeitos da radiação
11.
J Appl Clin Med Phys ; 15(5): 4874, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207574

RESUMO

Dose verifications for intensity-modulated radiation therapy (IMRT) are generally performed once before treatment. A 39-fraction treatment course for prostate cancer delivers a dose prescription of 78 Gy in eight weeks. Any changes in multileaf collimator leaf position over the treatment course may affect the dosimetry. To evaluate the magnitude of deviations from the predicted dose over an entire treatment course with MLC leaf calibrations performed every two weeks, we tracked weekly changes in relative dose error distributions measured with two-dimensional (2D) beam-by-beam analysis. We compared the dosimetric results from 20 consecutive patient-specific IMRT quality assurance (QA) tests using beam-by-beam analysis and a 2D diode detector array to the dose plans calculated by the treatment planning system (TPS). We added back the resulting relative dose error measured weekly into the original dose grid for each beam. To validate the prediction method, the predicted doses and dose distributions were compared to the measurements using an ionization chamber and film. The predicted doses were in good agreement, within 2% of the measured doses, and the predicted dose distributions also presented good agreement with the measured distributions. Dose verification results measured once as a pretreatment QA test were not completely stable, as results of weekly beam-by-beam analysis showed some variation. Because dosimetric errors throughout the treatment course were averaged, the overall dosimetric impact to patients was small.


Assuntos
Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Appl Clin Med Phys ; 14(5): 173-86, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24036870

RESUMO

The monochromatic images acquired by Gemstone spectral imaging (GSI) mode on the GE CT750 HD theoretically determines the computed tomography (CT) number more accurately than that of conventional scanner. Using the former, the CT number is calculated from (synthesized) monoenergetic X-ray data. We reasoned that the monochromatic image might be applied to radiotherapy treatment planning (RTP) to calculate dose distribution more accurately. Our goal here was to provide CT to electron density (ED) conversion curves with monochromatic images for RTP. Therefore, we assessed the reproducibility of CT numbers, an important factor on quality assurance, over short and long time periods for different substances at varying energy. CT number difference between measured and theoretical value was investigated. The scanner provided sufficient reproducibility of CT numbers for dose calculation over short and long time periods. The CT numbers of monochromatic images produced by this scanner had reasonable values for dose calculation. The CT to ED conversion curve becomes linear with respect to the relationship between CT numbers and EDs as the energy increases. We conclude that monochromatic imaging from a fast switching system can be applied for the dose calculation, keeping Hounsfield units (HU) stability.


Assuntos
Elétrons , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos , Humanos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
14.
J Contemp Brachytherapy ; 14(1): 87-95, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35233240

RESUMO

PURPOSE: The purpose of this study was to evaluate the effect of a lead block for alveolar bone protection in image-guided high-dose-rate interstitial brachytherapy for tongue cancer. MATERIAL AND METHODS: We treated 6 patients and delivered 5,400 cGy in 9 fractions using a lead block. Effects of lead block (median thickness, 4 mm) on dose attenuation by distance were visually examined using TG-43 formalism-based dose distribution curves to determine whether or not the area with the highest dose is located in the alveolar bone, where there is a high-risk of infection. Dose re-calculations were performed using TG-186 formalism with advanced collapsed cone engine (ACE) for inhomogeneity correction set to cortical bone density for the whole mandible and alveolar bone, water density for clinical target volume (CTV), air density for outside body and lead density, and silastic density for lead block and its' silicon replica, respectively. RESULTS: The highest dose was detected outside the alveolar bone in five of the six cases. For dose-volume histogram analysis, median minimum doses delivered per fraction to the 0.1 cm3 of alveolar bone (D0.1cm3 TG-43, ACE-silicon, and ACE-lead) were 344.3 (range, 262.9-427.4) cGy, 336.6 (253.3-425.0) cGy, and 169.7 (114.9-233.3) cGy, respectively. D0.1cm3 ACE-lead was significantly lower than other parameters. No significant difference was observed between CTV-related parameters. CONCLUSIONS: The results suggested that using a lead block for alveolar bone protection with a thickness of about 4 mm, can shift the highest dose area to non-alveolar regions. In addition, it reduced D0.1cm3 of alveolar bone to about half, without affecting tumor dose.

15.
In Vivo ; 35(4): 2089-2098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34182484

RESUMO

BACKGROUND/AIM: To evaluate the surrogate-guided registration accuracy of two computed tomography (CT) image sets, expiratory phase four-dimensional (Ex4D) CT and breath-holding CT (BHCT), in respiratory-gated radiotherapy for liver cancer. MATERIALS AND METHODS: The surrogate-guided registration errors were defined as the differences between the diaphragm- and fiducial-guided registrations or the differences between upper and lower fiducial registrations in three directions: left-right (LR), anterior-posterior (AP), and cranio-caudal (CC). RESULTS: The mean±SDs of the absolute errors for diaphragm-guided registration were 1.9±1.3, 2.7±1.8, and 2.6±1.7 mm with Ex4D and 1.8±1.8, 2.6±1.9, and 1.8±1.7 mm with BHCT in the LR, AP and CC directions, respectively (CC direction, p<0.01). In the fiducial-guided registration, there were no significant differences in any direction. In registration with Ex4D, there were positive correlations between registration errors and the respiratory irregularity during 4D scanning (correlation coefficient; diaphragm: 0.65, fiducial: 0.54). CONCLUSION: BHCT has the advantage of accurate surrogate-guided registration compared with Ex4D.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Radioterapia Guiada por Imagem , Suspensão da Respiração , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia
16.
J Radiat Res ; 62(2): 364-373, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33454766

RESUMO

Treatment time with the CyberKnife frameless radiosurgery system is prolonged due to the motion of the robotic arm. We have developed a novel scanning irradiation method to reduce treatment time. We generated treatment plans mimicking eight-field intensity-modulated radiotherapy (IMRT) plans generated for the Novalis radiosurgery system. 2D dose planes were generated with multiple static beam spots collimated by a fixed circular cone. The weights of the uniformly distributed beam spots in each dose plane were optimized using the attraction-repulsion model. The beam spots were converted to the scanning speed to generate the raster scanning plan. To shorten treatment time, we also developed a hybrid scanning method which combines static beams with larger cone sizes and the raster scanning method. Differences between the Novalis and the scanning plan's dose planes were evaluated with the criterion of a 5% dose difference. The mean passing rates of three cases were > 85% for cone sizes ≤ 12.5 mm. Although the total monitor units (MU) increased for smaller cone sizes in an inverse-square manner, the hybrid scanning method greatly reduced the total MU, while maintaining dose distributions comparable to those with the Novalis plan. The estimated treatment time of the hybrid scanning with a 12.5 mm cone size was on average 22% shorter than that of the sequential plans. This technique will be useful in allowing the CyberKnife with conventional circular cones to achieve excellent dose distribution with a shortened treatment time.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Procedimentos Cirúrgicos Robóticos , Algoritmos , Relação Dose-Resposta à Radiação , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
17.
J Radiat Res ; 62(2): 309-318, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33341880

RESUMO

The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose-volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P < 0.05). Furthermore, SA plans had fewer MUs and were less complex (P < 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem
18.
J Radiat Res ; 62(3): 494-501, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33866361

RESUMO

The purpose of this study was to evaluate the effect of dose rate to the rectum on late rectal complications in patients treated with computed tomography (CT)-based image-guided brachytherapy (IGBT) for cervical cancer. The subjects were 142 patients with cervical cancer who underwent Ir-192 high-dose-rate (HDR)-IGBT between March 2012 and January 2018. The dose rate to the rectum was calculated using in-house software. The minimum, mean and maximum effective dose rate (EDR) was calculated for voxels of the rectal volume covered by cumulative doses >D0.1cc, >D2cc, and > D5cc. The average EDR of three to four brachytherapy sessions was calculated (EDR for patients; EDRp). The total dose of the rectum was calculated as the biologically equivalent dose in 2-Gy fractions (EQD2). The associations between EDRp for D0.1cc, D2cc, and D5cc and the respective rectal EQD2 values with late rectal complications were then analyzed. The median follow-up period was 40 months. Patients with rectal complications of ≥Grade 1 received a significantly higher mean EDRp for D0.1cc-5cc and had a greater EQD2 for D0.1cc-5cc. Multivariate analysis was performed using the mean EDRp for D2cc, EQD2 for D2cc, heavy smoking and BMI. Of these four variables, mean EDRp for D2cc (HR = 3.38, p = 0.004) and EQD2 for D2cc (HR = 2.59, p = 0.045) emerged as independent predictors for late rectal complications. In conclusion, mean EDRp and EQD2 were associated with late rectal complications in patients treated with HDR CT-based IGBT for cervical cancer.


Assuntos
Braquiterapia , Radioterapia Guiada por Imagem , Reto/patologia , Reto/efeitos da radiação , Tomografia Computadorizada por Raios X , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta à Radiação , Feminino , Humanos , Pessoa de Meia-Idade , Análise Multivariada
19.
Med Phys ; 47(2): 371-379, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733105

RESUMO

PURPOSE: The aim of this study was to develop a deep learning (DL) method for generating virtual noncontrast (VNC) computed tomography (CT) images from contrast-enhanced (CE) CT images (VNCDL ) and to evaluate its performance in dose calculations for head and neck radiotherapy in comparison with VNC images derived from a dual-energy CT (DECT) scanner (VNCDECT ). METHODS: This retrospective study included data for 61 patients who underwent head and neck radiotherapy. All planning CT images were obtained with a single-source DECT scanner (80 and 140 kVp) with rapid kVp switching. The DL-based method used a pair of virtual monochromatic images (VMIs) at 70 keV with and without contrast materials. VMIs without contrast materials were used as reference true noncontrast (TNC) images. Deformable image registration was used between the TNC and CE images. We used the data of 45 patients, chosen randomly, for training (7922 paired images), and data from the other 16 patients as test data. We generated the VNCDL images with a densely connected convolutional network. As the VNCDECT images, we used VMIs with the iodine signal suppressed, reconstructed from the CE images of the 16 test patients. The CT numbers of the tumor, common carotid artery, internal jugular vein, muscle, fat, bone marrow, cortical bone, and mandible of each VNC image were compared with those of the TNC image. The dose of the reference TNC plan was recalculated using the CE, VNCDL , and VNCDECT images. Difference maps of the dose distributions and dose-volume histograms were evaluated. RESULTS: The mean prediction time for the VNCDL images was 3.4 s per patient, and the mean number of slices was 204. The absolute differences in CT numbers of the VNCDL images were significantly smaller than those of the VNCDECT images for the bone marrow (8.0 ± 6.5 vs 175.1 ± 40.9 HU; P < 0.001) and mandible (20.3 ± 19.3 vs 106.2 ± 80.5 HU; P = 0.002). The DL-based model provided the dose distribution most similar to that of the TNC plan. With the VNCDECT plans, dose errors >1.0% were observed in bone regions. The dose-volume histogram analysis showed that the VNCDL plans yielded the smallest errors for the primary target, although dose differences were <1.0% for all the approaches. For the maximum dose to the mandible, the mean ± SD errors for the CE, VNCDL , and VNCDECT plans were -0.13% ± 0.23% (range: -0.46% to 0.31%; P = 0.037), -0.01% ± 0.22% (range: -0.40% to 0.36%; P = 1.0), and 0.53% ± 0.47% (range: -0.21% to 1.41%; P < 0.001), respectively. CONCLUSIONS: In this study, we developed a method based on DL that can rapidly generate VNC images from CE images without a DECT scanner. Compared with the DECT approach, the DL-based method improved the prediction accuracy of CT numbers in bone regions. Consequently, there was greater agreement between the VNCDL and TNC plan dose distributions than with the CE and VNCDECT plans, achieved by suppressing the contrast material signals while retaining the CT numbers of bone structures.


Assuntos
Meios de Contraste/química , Aprendizado Profundo , Iodo/química , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Cabeça , Humanos , Pescoço , Intensificação de Imagem Radiográfica , Reprodutibilidade dos Testes , Fatores de Tempo
20.
J Radiat Res ; 61(1): 92-103, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31822894

RESUMO

The aim of this work is to generate synthetic computed tomography (sCT) images from multi-sequence magnetic resonance (MR) images using an adversarial network and to assess the feasibility of sCT-based treatment planning for brain radiotherapy. Datasets for 15 patients with glioblastoma were selected and 580 pairs of CT and MR images were used. T1-weighted, T2-weighted and fluid-attenuated inversion recovery MR sequences were combined to create a three-channel image as input data. A conditional generative adversarial network (cGAN) was trained using image patches. The image quality was evaluated using voxel-wise mean absolute errors (MAEs) of the CT number. For the dosimetric evaluation, 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans were generated using the original CT set and recalculated using the sCT images. The isocenter dose and dose-volume parameters were compared for 3D-CRT and VMAT plans, respectively. The equivalent path length was also compared. The mean MAEs for the whole body, soft tissue and bone region were 108.1 ± 24.0, 38.9 ± 10.7 and 366.2 ± 62.0 hounsfield unit, respectively. The dosimetric evaluation revealed no significant difference in the isocenter dose for 3D-CRT plans. The differences in the dose received by 2% of the volume (D2%), D50% and D98% relative to the prescribed dose were <1.0%. The overall equivalent path length was shorter than that for real CT by 0.6 ± 1.9 mm. A treatment planning study using generated sCT detected only small, clinically negligible differences. These findings demonstrated the feasibility of generating sCT images for MR-only radiotherapy from multi-sequence MR images using cGAN.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Estudos de Viabilidade , Humanos , Intensificação de Imagem Radiográfica , Radioterapia de Intensidade Modulada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA