RESUMO
The heterogeneous and dynamic microenvironment of biofilms complicates bacterial infection treatment. Nanozyme catalytic therapy has recently been promising in treating biofilm infections. However, active nanozymes designed with the required precision targeting the biofilm microenvironment are lacking. This work proposes a spatiotemporally guided single-atom bionanozyme (BioSAzyme) for targeted antibiofilm therapy based on protein engineering of copper single-atom nanozyme (Cu SAzyme). The Cu SAzyme, synthesized via a novel mechanochemistry-assisted method, features highly accessible Cu-N4 active sites exposed on 2D N-doped carbon, exhibiting excellent triple enzyme-like activities according to experimental results and density functional theory calculations. Inheriting biofunctionality from both glucose oxidase and concanavalin A, BioSAzyme can localize the biofilm glycocalyx and catalyze endogenous glucose into H2O2 and gluconic acid, thus triggering multiplex cascade reactions with pH self-adaption to consume glucose and glutathione and generate â¢OH radicals. This spatiotemporally guided bionanocatalytic agent effectively inhibits E. coli O157: H7 and methicillin-resistant S. aureus biofilms in vitro and in vivo. Taking together, this work opens up new avenues for the rational design of single-atom nanozymes for precise antibiofilm therapy.
RESUMO
Marine bioactive peptides (MBPs) are a type of natural compound with a variety of bioactivities, such as anticancer, antimicrobial, antioxidant, and antihypertensive. Due to a wide range of sources, low toxicity, and high specificity, MBPs have now received extensive attention in the fields of food, medicine, and cosmetics. The structure of MBPs determines their biological activities. Therefore, it is essential to analyze the relationship between the structure and bioactivity of MBPs. Because of the advantages of mild conditions, high specificity, safety, and environmental friendliness, enzymatic hydrolysis has become the most commonly used method to produce MBPs. However, the high cost and low yield of enzymatic methods have motivated researchers to search for alternative technologies. Novel pretreatments like ultrasound, microwave, high hydrostatic pressure, and pulsed electric fields have been employed in the production of MBPs. By inducing protein unfolding and increasing enzymatic cleavage sites, these techniques have been demonstrated to accelerate protein hydrolysis and enhance the biological activity of MBPs. This article reviews recent research advances on marine-derived protein hydrolysates and peptides, discusses the relationship between their biological activity and structure, and compares the mechanisms of action of different novel technologies used to promote protein hydrolysis and enhance the biological activity of MBPs. In addition, the current challenges facing the development and application of MBPs are outlined and possible future work in tackling these challenges is also suggested in the current review. It is hoped that this review can promote further development and application of marine active substances.
RESUMO
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
RESUMO
Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.
RESUMO
The potential of potato by-products as a protein source presents an exciting opportunity to explore new methods and technologies to extract, enhance, and incorporate this valuable protein source into a variety of food products. This article reviews the progress in research related to potato and other tuber plant protein extraction technology. It also explores some conventional and novel techniques for plant protein extraction that may be applicable to tuber protein extraction. For extraction from solid matter, conventional methods such as acid-base extraction with heat assistance often mean a waste of energy, solvent, and destruction of protein structure. Enzyme-assisted, ultrasound-assisted, and pulsed electric field extraction have their own advantages as novel processing methods. For liquid by-products of tuber plants, precipitation, membrane filtration and chromatography are applied to extract proteins. By combining protein extraction with various biomass extraction methods, every part of the potatoes can be fully utilized, minimizing waste. This approach offers the opportunity to optimize the utilization of all potatoes components, reduce waste, generate additional revenue streams and ultimately increase the sustainability and effectiveness of the process.
RESUMO
As there is growing interest in process control for quality and safety in the meat industry, by integrating spectroscopy and imaging technologies into one system, hyperspectral imaging, or chemical or spectroscopic imaging has become an alternative analytical technique that can provide the spatial distribution of spectrum for fast and nondestructive detection of meat safety. This review addresses the configuration of the hyperspectral imaging system and safety indicators of muscle foods involving biological, chemical, and physical attributes and other associated hazards or poisons, which could cause safety problems. The emphasis focuses on applications of hyperspectral imaging techniques in the safety evaluation of muscle foods, including pork, beef, lamb, chicken, fish and other meat products. Although HSI can provide the spatial distribution of spectrum, characterized by overtones and combinations of the C-H, N-H, and O-H groups using different combinations of a light source, imaging spectrograph and camera, there still needs improvement to overcome the disadvantages of HSI technology for further applications at the industrial level.
Assuntos
Inocuidade dos Alimentos , Imageamento Hiperespectral , Bovinos , Animais , Ovinos , Carne/análise , Análise Espectral/métodos , MúsculosRESUMO
As one of the main functional substances, carbohydrates account for a large proportion of the human diet. Conventional analysis and detection methods of dietary carbohydrates and related products are destructive, time-consuming, and labor-intensive. In order to improve the efficiency of measurement and ensure food nutrition and consumer health, rapid and nondestructive quality evaluation techniques are needed. In recent years, terahertz (THz) spectroscopy, as a novel detection technology with dual characteristics of microwave and infrared, has shown great potential in dietary carbohydrate analysis. The current review aims to provide an up-to-date overview of research advances in using the THz spectroscopy technique in analysis and detection applications related to dietary carbohydrates. In the review, the principles of the THz spectroscopy technique are introduced. Advances in THz spectroscopy for quantitative and qualitative analysis and detection in dietary carbohydrate-related research studies from 2013 to 2022 are discussed, which include analysis of carbohydrate concentrations in liquid and powdery foods, detection of foreign body and chemical residues in carbohydrate food products, authentication of natural carbohydrate produce, monitoring of the fermentation process in carbohydrate food production and examination of crystallinity in carbohydrate polymers. In addition, applications in dietary carbohydrate-related detection research using other spectroscopic techniques are also briefed for comparison, and future development trends of THz spectroscopy in this field are finally highlighted.
Assuntos
Espectroscopia Terahertz , Humanos , Espectroscopia Terahertz/métodos , Carboidratos da Dieta , Análise Espectral/métodosRESUMO
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
RESUMO
The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and ß-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.
Assuntos
Antioxidantes , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Carbono/metabolismo , Bactérias/metabolismoRESUMO
Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.
RESUMO
In considering the need of people all over the world for high-quality food, there has been a recent increase in interest in the role of nondestructive and rapid detection technologies in the food industry. Moreover, the analysis of data acquired by most nondestructive technologies is complex, time-consuming, and requires highly skilled operators. Meanwhile, the general applicability of various chemometric or statistical methods is affected by noise, sample, variability, and data complexity that vary under various testing conditions. Nowadays, machine learning (ML) techniques have a wide range of applications in the food industry, especially in nondestructive technology and equipment intelligence, due to their powerful ability in handling irrelevant information, extracting feature variables, and building calibration models. The review provides an introduction and comparison of machine learning techniques, and summarizes these algorithms as traditional machine learning (TML), and deep learning (DL). Moreover, several novel nondestructive technologies, namely acoustic analysis, machine vision (MV), electronic nose (E-nose), and spectral imaging, combined with different advanced ML techniques and their applications in food quality assessment such as variety identification and classification, safety inspection and processing control, are presented. In addition to this, the existing challenges and prospects are discussed. The result of this review indicates that nondestructive testing technologies combined with state-of-the-art machine learning techniques show great potential for monitoring the quality and safety of food products and different machine learning algorithms have their characteristics and applicability scenarios. Due to the nature of feature learning, DL is one of the most promising and powerful techniques for real-time applications, which needs further research for full and wide applications in the food industry.
Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Qualidade dos AlimentosRESUMO
Infrared drying (IRD) is considered an innovative drying solution for the food industry with advantages of energy-saving potentials, reduced drying time and production cost-effectiveness. However, IRD also suffers from drawbacks such as weak penetrative ability, and product overheating and burning. Therefore, over the years, significant progress has been made to overcome these shortcomings by developing infrared-accelerated drying (IRAD) technology based on the combination of IRD with other drying technologies. Although several reviews have been published on IRD, no review focusing on IRAD is yet available. The current review presents up-to-date knowledge and findings on the applications of IRAD technologies for enhancing the quality and safety of food. The fundamental principles and characteristics of IRAD, energy-saving potentials, simulation and optimization approaches for enhancing efficiency, and developments in various acceleration approaches by combining with other drying techniques for achieving better end-products are discussed, and challenges and future work for developing the novel accelerated drying technology are also presented. Due to the synergistic effects of sequential or simultaneous combined drying methods, the total drying time and energy required are drastically lowered with most IRAD technologies, and consequently there are significant improvements in the sensory, nutritional, and safety attributes of dried food products with better appearance and quality. The development of multi-wavelength IRAD systems based on infrared absorption bands, and the incorporation of novel sensing techniques for real-time monitoring during drying will further enhance process efficiency and food quality and safety.
Assuntos
Dessecação , Manipulação de Alimentos , Manipulação de Alimentos/métodos , Dessecação/métodos , Qualidade dos Alimentos , Alimentos , TecnologiaRESUMO
AIM: The aim of the current study is to elucidate the inactivation and molecular response pattern of sublethal Listeria monocytogenes to cold plasma-mediated two-pronged oxidative microenvironments from a high-throughput multi-omics perspective. METHODS AND RESULTS: First joint transcriptomics and metabolomics analyses revealed that significantly expressed genes and metabolites were mainly involved in enhanced transmembrane transport and Fe2+/Cu+ efflux, amino acid limitation, cytoplasmic pH homeostasis, reconfiguration of central carbon metabolism flux, and energy conservation strategy, which triggered the surge of intracellular endogenous oxidative stress and finally mediated bacterial ferroptosis and pathogenicity attenuation. Typical antioxidant systems such as the TrxR-Trx system and common antioxidant genes (e.g. sodA, katA, ahpC, trxA, spxA) were inhibited, and the more prominent antioxidant pathways include methionine metabolism, the pentose phosphate pathway, and glutathione metabolism, as well as the DNA repair systems. CONCLUSIONS: Therefore, our work confirmed from the transcriptional and metabolic as well as physiological levels that cold plasma-mediated intracellular oxidative stress induced big perturbations in pathways as a driving force for the inactivation and pathogenicity attenuation of L. monocytogenes. SIGNIFICANCE AND IMPACT OF STUDY: This study provided new insights for the construction of multi-dimensional mechanisms of bacterial inactivation and pathogenicity attenuation for the precise control and inactivation of microorganisms in plasma non-thermal processing.
Assuntos
Listeria monocytogenes , Gases em Plasma , Antioxidantes/metabolismo , Transcriptoma , Metabolômica/métodosRESUMO
Aggregates often exhibit modified or completely new properties compared with their molecular elements, making them an extraordinarily advantageous form of materials. The fluorescence signal change characteristics resulting from molecular aggregation endow aggregates with high sensitivity and broad applicability. In molecular aggregates, the photoluminescence properties at the molecular level can be annihilated or elevated, leading to aggregation-causing quenching (ACQ) or aggregation-induced emission (AIE) effects. This change in photoluminescence properties can be intelligently introduced in food hazard detection. Recognition units can combine with the aggregate-based sensor by joining the aggregation process, endowing the sensor with the high specificity of analytes (such as mycotoxins, pathogens, and complex organic molecules). In this review, aggregation mechanisms, structural characteristics of fluorescent materials (including ACQ/AIE-activated), and their applications in food hazard detection (with/without recognition units) are summarized. Because the design of aggregate-based sensors may be influenced by the properties of their components, the sensing mechanisms of different fluorescent materials were described separately. Details of fluorescent materials, including conventional organic dyes, carbon nanomaterials, quantum dots, polymers and polymer-based nanostructures and metal nanoclusters, and recognition units, such as aptamer, antibody, molecular imprinting, and host-guest recognition, are discussed. In addition, future trends of developing aggregate-based fluorescence sensing technology in monitoring food hazards are also proposed.
Assuntos
Corantes Fluorescentes , Nanoestruturas , Fluorescência , Corantes Fluorescentes/química , Polímeros/química , TecnologiaRESUMO
Plasma-activated liquids (PALs) are emerging and promising alternatives to traditional decontamination technologies and have evolved as a new technology for applications in food, agriculture, and medicine. Contamination caused by foodborne pathogens and their biofilms has posed challenges and concerns to the food industry in terms of safety and quality. The nature of the food and the food processing environment are major factors that contribute to the growth of various microorganisms, followed by the biofilm characteristics that ensure their survival in severe environmental conditions and against traditional chemical disinfectants. PALs show an efficient impact against microorganisms and their biofilms, with various reactive species (short- and long-lived ones), physiochemical properties, and plasma processing factors playing a crucial role in mitigating biofilms. Moreover, there is potential to improve and optimize disinfection strategies using a combination of PALs with other technologies for the inactivation of biofilms. The overarching aim of this study is to build a better understanding of the parameters that govern the liquid chemistry generated in a liquid exposed to plasma and how these translate into biological effects on biofilms. This review provides a current understanding of PALs-mediated mechanisms of action on biofilms; however, the precise inactivation mechanism is still not clear and is an important part of the research. Implementation of PALs in the food industry could help overcome the disinfection hurdles and can enhance biofilm inactivation efficacy. Future perspectives in this field to expand existing state of the art to seek breakthroughs for scale-up and implementation of PALs technology in the food industry are also discussed.
Assuntos
Desinfetantes , Desinfetantes/farmacologia , Desinfecção , Manipulação de Alimentos , Indústria Alimentícia , BiofilmesRESUMO
Metal-organic frameworks (MOFs) are a versatile toolbox for the bioinspired design of nanozymes for antibacterial applications and beyond, however, designing a nanozyme by the hierarchical quasi-MOF scheme remains largely unpracticed. This work exemplifies the preferential structure-activity correlation of a bimetallic quasi-MOF (Q-MOFCe0.5 ) among three series of MOF-derived peroxidase (POD) mimics. The biomimetic quasi-MOFCe0.5 nanosheets accommodate both oxygen vacancy-coupled multivalent redox cycles and photosensitive energy band layout, benefiting from the hierarchical heterojunction-like 0D/2D interface featuring isolated nodes-derived CeOCu sites upon the 2D decarboxylated MOF scaffold. These integrated unique merits enable the POD-like Q-MOFCe0.5 to generate sustained reactive oxygen species to effectively eradicate the surface-adhered bacteria under visible light, resulting in significant inactivation of Escherichia coli (99.74 %) and Staphylococcus aureus (99.35%) in vitro, and potent disinfection of skin wounds in vivo in safe and on-demand manners. It is hoped that this work can intensify the interventions of MOF nanozymes against the microbial world.
Assuntos
Estruturas Metalorgânicas , Biomimética , Desinfecção , Escherichia coli , Oxirredutases , Peroxidase , PeroxidasesRESUMO
The conventional microbial cell analyses are mostly population-averaged methods that conceal the characteristics of single-cell in the community. Single-cell analysis can provide information on the functional and structural variation of each cell, resulting in the elimination of long and tedious microbial cultivation techniques. Raman spectroscopy is a label-free, noninvasive, and in-vivo method ideal for single-cell measurement to obtain spatially resolved chemical information. In the current review, recent developments in Raman spectroscopic techniques for microbial characterization at the single-cell level are presented, focusing on Raman imaging of single cells to study the intracellular distribution of different components. The review also discusses the limitation and challenges of each technique and put forward some future outlook for improving Raman spectroscopy-based techniques for single-cell analysis. Raman spectroscopic methods at the single-cell level have potential in precision measurements, metabolic analysis, antibiotic susceptibility testing, resuscitation capability, and correlating phenotypic information to genomics for cells, the integration of Raman spectroscopy with other techniques such as microfluidics, stable isotope probing (SIP), and atomic force microscope can further improve the resolution and provide extensive information. Future focuses should be given to advance algorithms for data analysis, standardized reference libraries, and automated cell isolation techniques in future.
Assuntos
Análise de Célula Única , Análise Espectral Raman , Isótopos , Análise de Célula Única/métodos , Análise Espectral Raman/métodosRESUMO
The membrane can not only be used as food packaging, but also for the separation, fractionation and recovery of food ingredients. Graphene oxide (GO) sheets are a two-dimensional (2 D) material with a unique structure that exhibit excellent mechanical properties, biocompatibility, and flexibility. The corporation of polymer matrix membrane with GO can significantly improve the permeability, selectivity, and antibacterial activity. In this review, the chemical structures of GO, GO membranes and GO/polymer composite membranes are introduced, the permeation mechanisms of molecules through the membranes are discussed and key factors affecting the permeability are presented in detail. In addition, recent applications in the food industry for filtration, bioreactions and active food packaging are analyzed, and limitations and future trends of GO membranes development are also highlighted. GO/polymer composite membranes exhibit excellent permeability, selectivity and strong barrier properties against bacterial and gas permeation. However, current food material filtration and packaging applications of GO/polymer composite membranes are still in the laboratory stage. Future work can focus on the development of large scale uniformly sized GO production, the homogeneous distribution and tight combination of GO in polymer matrixes, the sensing function of GO in packaging, and the verification method of GO toxicology.
Assuntos
Grafite , Polímeros , Embalagem de Alimentos , Grafite/química , Membranas ArtificiaisRESUMO
Controlled release (CR) systems have become a powerful platform for accurate and effective delivery of bioactive compounds (BCs). Metal-organic frameworks (MOFs) are one of the best BCs-loaded carriers for CR systems. In the review, the principles and methods of the design and synthesis of MOFs-CR systems are summarized in detail, the encapsulation of BCs by MOFs and CR mechanisms are explored, and their biological toxicity and biocompatibility are highlighted and applications in the food industry are discussed. In addition, current challenges in this field and possible future development directions are also presented. MOFs have been proven to encapsulate BCs effectively, including gaseous and solid molecules, and control the release of BCs through spontaneous diffusion or stimulus-response. The solubility, stability and biocompatibility of BCs encapsulated by MOFs are greatly improved, which expands their applications in foods. The effective CR of BCs by MOFs-CR systems is beneficial to assist in maintaining or even improving the quality and safety of food, reduce the BCs usage while increasing the bioavailability. Low- or non-biotoxic MOFs, especially bio-MOFs, show greater application prospects in the food industry.
Assuntos
Estruturas Metalorgânicas , SolubilidadeRESUMO
Dehydration is one of the most widely used food processing techniques, which is sophisticated in nature. Rapid and accurate prediction of dehydration performance and its effects on product quality is still a difficult task. Traditional analytical methods for evaluating food dehydration processes are laborious, time-consuming and destructive, and they are not suitable for online applications. On the other hand, vibrational spectral techniques coupled with chemometrics have emerged as a rapid and noninvasive tool with excellent potential for online evaluation and control of the dehydration process to improve final dried food quality. In the current review, the fundamental of food dehydration and five types of vibrational spectral techniques, and spectral data processing methods are introduced. Critical overtones bands related to dehydration attributes in the near-infrared (NIR) region and the state-of-the-art applications of vibrational spectral analyses in evaluating food quality attributes as affected by dehydration processes are summarized. Research investigations since 2010 on using vibrational spectral technologies combined with chemometrics to continuously monitor food quality attributes during dehydration processes are also covered in this review.