Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 17(8): e2000243, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472636

RESUMO

Squalene has been used as a dietary supplement for a long history due to its potential cancer-preventive function. However, the mechanism has not been investigated in detail yet. Therefore, the aim of this study is to see if the plasma coenzyme Q10 (CoQ10) level will be altered by gavage of squalene and oxidosqualenes to rats. In the present work, a sensitive and simple high-performance analytical method based on ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometry (UPLC-Orbitrap-MS) was developed for the quantification of CoQ10 in rat plasma. Coenzyme Q9 (CoQ9) was employed as the internal standard. CoQ10 was determined after acetonitrile-mediated plasma protein precipitation using UPLC-Orbitrap-MS in negative ion mode. Intragastric administration of squalene and the two squalene epoxides into rats once daily for several days elevated the level of CoQ10 in their plasma, but there was no significant difference between high-dose (286 mg/kg) and low-dose (143 mg/kg) groups. Intragastric administration of squalene once a day for 5 consecutive days and oxidosqualenes once a day for 3 consecutive days is necessary for reaching the steady-state level of CoQ10. Our present findings indicate that squalene and oxidosqualenes may be useful for stimulating the synthesis of CoQ10 in rats.


Assuntos
Compostos de Epóxi/farmacologia , Homeostase/efeitos dos fármacos , Esqualeno/farmacologia , Espectrometria de Massas em Tandem/métodos , Ubiquinona/análogos & derivados , Animais , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Ratos , Reprodutibilidade dos Testes , Ubiquinona/metabolismo
2.
Heliyon ; 8(12): e12106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544827

RESUMO

Objectives: Acute myeloid leukemia (AML) is a malignant disease characterized by clonal proliferation of myeloid cells, and its treatment continues to be a challenge due to high morbidity and mortality. Ginsenoside compound K, a major active metabolite of the protopanaxadiol-type ginsenosides, exhibits biological activities in various cancer cells and animal models. Here, we investigated the role of CK in anticancer potential in AML both in vitro and in vivo. Materials and methods: To investigate the inhibitory effects of CK in AML cells, in vitro experiments, including cell viability assays, colony forming assays, and cell cycle and apoptosis assays were performed. AML animal experiment was established and quantitative analysis of lung tumor growth nodules and spleen weight and H&E staining were carried out to further determine the effects of CK on AML. In addition, the potential key genes induced and influenced by CK during treatment was identification by RNA-seq and qRT-PCR. Results: CK suppressed AML cell activity and induced apoptosis and G1 cell cycle arrest based on the experiment results. Moreover, significantly down-regulated expression genes of BCL2, KIT, DNMT3A, MYC and CSF-1 and up-regulated expression gene of TET2 in CK treatment AML cells were discovered. Conclusion: Our results demonstrated that CK could be used as an anti-AML drug with significant therapeutic efficacy and good biosafety.

3.
Theranostics ; 11(12): 5831-5846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897884

RESUMO

Purpose: The implementation of targeted therapies for acute myeloid leukemia (AML) has been challenging. Fat mass and obesity associated protein (FTO), an mRNA N6-methyladenosine (m6A) demethylase, functions as an oncogene that promotes leukemic oncogene-mediated cell transformation and leukemogenesis. Here, we investigated the role of Saikosaponin-d (SsD) in broad anti-proliferation effects in AML and evaluated the m6A demethylation activity by targeting FTO of SsD. Methods: It was examined whether and how SsD regulates FTO/m6A signaling in AML. The pharmacologic activities and mechanisms of actions of SsD in vitro, in mice, primary patient cells, and tyrosine kinase inhibitors-resistant cells were determined. Results: SsD showed a broadly-suppressed AML cell proliferation and promoted apoptosis and cell-cycle arrest both in vitro and in vivo. Mechanistically, SsD directly targeted FTO, thereby increasing global m6A RNA methylation, which in turn decreased the stability of downstream gene transcripts, leading to the suppression of relevant pathways. Importantly, SsD also overcame FTO/m6A-mediated leukemia resistance to tyrosine kinase inhibitors. Conclusion: Our findings demonstrated that FTO-dependent m6A RNA methylation mediated the anti-leukemic actions of SsD, thereby opening a window to develop SsD as an epitranscriptome-base drug for leukemia therapy.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ácido Oleanólico/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/genética , Células U937
4.
J Mater Chem B ; 8(41): 9544-9554, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33000780

RESUMO

Fluorescent nanoparticles based on 9,10-distyrylanthracene (DSA) derivatives (4,4'-((1E,1'E)-anthracene-9,10-diylbis(ethene-2,1-diyl))bis(N,N-dimethylaniline) (NDSA) and 4,4'-((1E,1'E)-anthracene-9,10-diylbis(ethene-2,1-diyl))dibenzonitrile (CNDSA)) were prepared using an ultrasound aided nanoprecipitation method. The morphologies of the fluorescent nanoparticles could be controlled by adjusting the external ultrasonication time. NDSA or CNDSA could form spherical nanodots (NDSA NDs, CNDSA NDs) in a THF-H2O mixture with an 80% or 70% water fraction when the ultrasonication time was 30 s. When the ultrasonication time was prolonged to 10 min, NDSA and CNDSA could assemble into nanorods (NDSA NRs, CNDSA NRs). Meanwhile, the sizes of NDSA NRs and CNDSA NRs could be controlled by adjusting the water content in the mixture. As the water fraction was increased from 60% to 80%, the sizes of NDSA and CNDSA nanorods or nanodots reduced from 238.4 nm to 140.3 nm, and 482 nm to 198.4 nm, respectively. When the water fraction was up to 90%, irregular morphologies of NDSA and CNDSA could be observed. The nanoparticles exhibited intense fluorescence emission, good anti-photobleaching properties, as well as excellent stability and biocompatibility. In vitro cell imaging experiments indicated that the nanorods prepared by this simple method had the potential to be used for efficient and noninvasive long-term bioimaging.


Assuntos
Antracenos/química , Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Nanotubos/química , Células A549 , Antracenos/metabolismo , Materiais Biocompatíveis/metabolismo , Endocitose , Corantes Fluorescentes/metabolismo , Humanos , Nanotubos/ultraestrutura , Imagem Óptica/métodos , Sonicação
5.
Acta Biomater ; 111: 363-372, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32434082

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Biomimetic nanoparticles (NPs) coated with cell membranes show enhanced biocompatibility and specificity for homotypic cells, and have gained considerable attention for targeted anti-tumor therapy. We constructed cancer cell-macrophage hybrid membrane-coated near infrared (NIR)-responsive hollow copper sulfide nanoparticles encapsulating sorafenib and surface modified with anti-VEGFR (CuS-SF@CMV NPs). These CuS-SF@CMV NPs expressed the characteristic membrane proteins of both cancer cells and macrophages, and selectively accumulated in cancer cells in vitro and tumors in vivo, compared to the CuS NPs. In addition, the CuS-SF@CMV NPs achieved synergistic photo-thermal and chemotherapy in cancer cells upon NIR irradiation, with 94.3% inhibition of tumor growth in a murine hepatoma model. While the initial increase in temperature rapidly killed the tumor cells, sorafenib and the anti-VEGFR antibody sustained the tumor killing effect by respectively inhibiting tumor cell proliferation and angiogenesis via the Ras/Raf/MEK/ERK and PI3K/AKT pathways. Taken together, the CuS-SF@CMV NPs have immune evasion, tumor cell targeting and drug loading capacities, along with an inherent photo-thermal conversion ability, making them ideal for synergistic photo-thermal/chemo therapy against HCC. STATEMENT OF SIGNIFICANCE: We created cancer cell-macrophage hybrid membrane-coated hollow CuS NPs encapsulating sorafenib and surface modified with anti-VEGFR antibodies (CuS-SF@CMV). These CuS-SF@CMV NPs enhanced synergistic PTT and chemotherapy against hepatoma cells through homotypic cell targeting, immune escape and inhibition of a tumorigenic signaling pathway. A long-term inhibition of tumor growth and metastasis was achieved owing to the rapid destruction of the cancer cells through photo-thermal conversion by the CuS NPs, and sustained clearance of the tumor cells by sorafenib and anti-VEGFR antibodies. Our findings suggest that CuS-SF@CMV NPs present great treating effects in preclinical models of HCC, providing the framework for further study in clinical trials to improve patient outcome in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Cobre/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fosfatidilinositol 3-Quinases , Fototerapia , Sulfetos
6.
J Am Soc Mass Spectrom ; 30(4): 581-587, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784004

RESUMO

An innovative strategy for sustainably active oxygen capture using nitrogen (N2) instead of helium (He) as direct analysis in real-time (DART) gas is demonstrated in this work. DART MS was carried out to analyze different polarity compounds including organophosphorus pesticides, amino acids, hormones, and poly brominated diphenyl ethers by using He and N2 as DART gas, respectively. The unexpectedly characteristic ionization reactions, including replacement reaction where the sulfur atom of P=S group, were replaced by oxygen atom, oxidation ([M + nO + H]+ or [M + nO-H]- (n = 1, 2, 3, 4, 5)), and hydrogen loss (loss of two hydrogens) rapidly occurred in situ in the presence of N2 under ambient conditions without any additives. The reaction mechanisms were proposed and further confirmed by high-resolution tandem mass spectrometry. Our study under high temperature and high voltage provides a powerful tool for generating unique ionic species that may be difficult to form by other means, which also creates favorable conditions for the future study of the mechanism of DART MS. Graphical Abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA