Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(6): 1917-1933, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38637990

RESUMO

Cancer immunotherapy has greatly improved the prognosis of tumor-bearing patients. Nevertheless, cancer patients exhibit low response rates to current immunotherapy drugs, such as PD1 and PDL1 antibodies. Cyclic dinucleotide analogs are a promising class of immunotherapeutic agents. In this study, in situ autologous tumor vaccines, composed of bis-2'-F-cGSASMP phosphonothioate isomers (FGA-di-pS-2 or FGA-di-pS-4) and cytidinyl/cationic lipids (Mix), were constructed. Intravenous and intratumoral injection of FGA-di-pS-2/Mix or FGA-di-pS-4/Mix enhanced the immunogenic cell death of tumor cells in vivo, leading to the exposure and presentation of whole tumor antigens, inhibiting tumor growth in both LLC and EO771 tumor in situ murine models and increasing their survival rates to 50% and 23%, respectively. Furthermore, the tumor-bearing mice after treatment showed potent immune memory efficacy and exhibited 100% protection against tumor rechallenge. Intravenous administration of FGA-di-pS-2/Mix potently promoted DC maturation, M1 macrophage polarization and CD8+ T cell activation and decreased the proportion of Treg cells in the tumor microenvironment. Notably, two doses of ICD-debris (generated by FGA-di-pS-2 or 4/Mix-treated LLC cells) protected 100% of mice from tumor growth. These tumor vaccines showed promising results and may serve as personalized cancer vaccinations in the future.


Assuntos
Vacinas Anticâncer , Imunoterapia , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Células Dendríticas/imunologia , Feminino , Antígenos de Neoplasias/imunologia
2.
PLoS Genet ; 18(9): e1010424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129930

RESUMO

In most plants, sucrose, a major storage sugar, is transported into sink organs to support their growth. This key physiological process is dependent on the function of sucrose transporters. Sucrose export from source tissues is predominantly controlled through the activity of SUCROSE TRANSPORTER 2 (SUC2), required for the loading of sucrose into the phloem of Arabidopsis plants. However, how SUC2 activity is controlled to support root growth remains unclear. Glucose is perceived via the function of HEXOKINASE 1 (HXK1), the only known nuclear glucose sensor. HXK1 negatively regulates the stability of ETHYLENE-INSENSITIVE3 (EIN3), a key ethylene/glucose interaction component. Here we show that HXK1 functions upstream of EIN3 in the regulation of root sink growth mediated by glucose signaling. Furthermore, the transcription factor EIN3 directly inhibits SUC2 activity by binding to the SUC2 promoter, regulating glucose signaling linked to root sink growth. We demonstrate that these molecular components form a HXK1-EIN3-SUC2 module integral to the control of root sink growth. Also, we demonstrate that with increasing age, the HXK1-EIN3-SUC2 module promotes sucrose phloem loading in source tissues thereby elevating sucrose levels in sink roots. As a result, glucose signaling mediated-sink root growth is facilitated. Our findings thus establish a direct molecular link between the HXK1-EIN3-SUC2 module, the source-to sink transport of sucrose and root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta , Plantas/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética
3.
Anal Chem ; 96(19): 7353-7359, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690857

RESUMO

Accurate detection of multiple cardiovascular biomarkers is crucial for the timely screening of acute coronary syndrome (ACS) and differential diagnosis from acute aortic syndrome (AAS). Herein, an antibody microarray-based metal-enhanced fluorescence assay (AMMEFA) has been developed to quantitatively detect 7 cardiovascular biomarkers through the formation of a sandwich immunoassay on the poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate)-decorated GNR-modified slide (GNR@P(GMA-HEMA) slide). The AMMEFA exhibits high specificity and sensitivity, the linear ranges span 5 orders of magnitude, and the limits of detection (LODs) of cardiac troponin I (cTnI), heart-type fatty acid binding protein (H-FABP), C-reactive protein (CRP), copeptin, myoglobin, D-Dimer, and N-terminal pro-brain natriuretic peptide (NT-proBNP) reach 0.07, 0.2, 65.7, 0.6, 0.2, 8.3, and 0.3 pg mL-1, respectively. To demonstrate its practicability, the AMMEFA has been applied to quantitatively analyze 7 cardiovascular biomarkers in 140 clinical plasma samples. In addition, the expression levels of cardiovascular biomarkers were analyzed by the least absolute shrinkage and selector operator (LASSO) regression, and the area under receiver operator characteristic curves (AUCs) of healthy donors (HDs), ACS patients, and AAS patients are 0.99, 0.98, and 0.97, respectively.


Assuntos
Biomarcadores , Humanos , Biomarcadores/sangue , Biomarcadores/análise , Análise Serial de Proteínas/métodos , Limite de Detecção , Imunoensaio/métodos , Fluorescência
4.
Small ; 20(2): e2308270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37948414

RESUMO

It is an urgent problem to realize reliable microwave absorption materials (MAMs) with low density. To address this issue, a series of controlled experiments w ere carried out, which indicated that the tubular structure enables excellent microwave absorption properties with a lower powder filling rate. This performance is attributable to the combined dielectric and magnetic loss mechanisms provided by Co/C and the interface polarization facilitated by multiple heterogeneous interfaces. Particularly, Co@C nanotubes, benefiting from the enhanced heterointerface polarization due to their abundant specific surface area and the reduced electron migration barrier induced by their 1D stacked structure, effectively achieved a dual enhancement of dielectric loss and polarization loss at lower powder filling ratios. Furthermore, the magnetic coupling effect of magnetic nanoparticle arrays in tubular structures is demonstrated by micromagnetic simulation, which have been few reported elsewhere. These propertied enable Co@C nanotubes to achieve minimum reflection loss and maximum effective absorption broadband values of 61.0 dB and 5.5 GHz, respectively, with a powder filling ratio of 20 wt% and a thickness of 1.94 mm. This study reveals the significance of designing 1D structures in reducing powder filling ratio and matching thickness, providing valuable insights for developing MAMs with different microstructures.

5.
Opt Lett ; 49(9): 2429-2432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691736

RESUMO

To the best of our knowledge, the output performance of a self-Q-switched Tm:YAP laser has been controlled by adjusting the cavity length for the first time. By using a concise concave-flat cavity, a pulsed laser emitting at 1993 nm is produced without any additional modulation device. Under a stable self-Q-switched mode, the maximum average output power of 9.76 W is achieved from the laser when the incident pump power is 28.78 W, corresponding to a slope efficiency of 36.9% and an optical-to-optical conversion efficacy of 33.9%. Also, the narrowest pulse width of 485 ns at 48.97 kHz is obtained from the laser with a single pulse energy of 199.3 µJ. As far as we know, this laser has the highest average power and narrowest pulse width compared to other self-Q-switched Tm:YAP lasers.

6.
J Dairy Sci ; 107(7): 5150-5161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38395404

RESUMO

High-yielding dairy cows in early lactation often encounter difficulties in meeting the energy requirements essential for maintaining milk production. This is primarily attributed to insufficient dry matter intake, which consequently leads to sustained lipolysis of adipose tissue. Fatty acids released by lipolysis can disrupt metabolic homeostasis. Autophagy, an adaptive response to intracellular environmental changes, is considered a crucial mechanism for regulating lipid metabolism and maintaining a proper cellular energy status. Despite its close relationship with aberrant lipid metabolism and cytolipotoxicity in animal models of metabolic disorders, the precise function of diacylglycerol o-acyltransferase 1 (DGAT1) in bovine adipose tissue during periods of negative energy balance is not fully understood, particularly regarding its involvement in lipolysis and autophagy. The objective of the present study was to assess the effect of DGAT1 on both lipolysis and autophagy in bovine adipose tissue and isolated adipocytes. Adipose tissue and blood samples were collected from cows diagnosed as clinically ketotic (n = 15) or healthy (n = 15) following a veterinary evaluation based on clinical symptoms and serum concentrations of BHB, which were 3.19 mM (interquartile range = 0.20) and 0.50 mM (interquartile range = 0.06), respectively. Protein abundance of DGAT1 and phosphorylation levels of unc-51-like kinase 1 (ULK1), were greater in adipose tissue from cows with ketosis, whereas phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were lower. Furthermore, when adipocytes isolated from the harvested adipose tissue of 15 healthy cows were transfected with DGAT1 overexpression adenovirus or DGAT1 small interfering RNA followed by exposure to epinephrine (EPI), it led to greater ratios and protein abundance of phosphorylated hormone-sensitive triglyceride lipase (LIPE) to total LIPE and adipose triglyceride lipase (ATGL), while inhibiting the protein phosphorylation levels of ULK1, PI3K, AKT, and mTOR. Overexpression of DGAT1 in EPI-treated adipocytes reduced lipolysis and autophagy, whereas silencing DGAT1 further exacerbated EPI-induced lipolysis and autophagy. Taken together, these findings indicate that upregulation of DGAT1 may function as an adaptive response to suppress adipocytes lipolysis, highlighting the significance of maintaining metabolic homeostasis in dairy cows during periods of negative energy balance.


Assuntos
Tecido Adiposo , Autofagia , Diacilglicerol O-Aciltransferase , Lipólise , Animais , Bovinos , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Feminino , Tecido Adiposo/metabolismo , Lactação , Cetose/veterinária , Cetose/metabolismo , Metabolismo dos Lipídeos , Adipócitos/metabolismo
7.
J Dairy Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754818

RESUMO

Excessive concentrations of free fatty acids (FFA) are the main factors causing immune dysfunction and inflammation in dairy cows with ketosis. Polarization of macrophages (the process of macrophages freely switching from one phenotype to another) into M1 or M2 phenotypes is an important event during inflammation induced by environmental stimuli. In non-ruminants, mammalian target of rapamycin (mTOR)-mediated autophagy (a major waste degradation process) regulates macrophage polarization. Thus, the objective was to unravel the role of mTOR-mediated autophagy on macrophage polarization in ketotic dairy cows. Four experiments were performed as follows: (1) In vitro differentiated monocyte-derived macrophages from healthy dairy cows or dairy cows with clinical ketosis (CK) were treated with 100 ng/mL lipopolysaccharide (LPS) and 100 ng/mL interferon-γ (IFN-γ) or 10 ng/mL interleukin-4 (IL4) and 10 ng/mL interleukin-10 (IL10) for 24 h; (2) Immortalized bovine macrophages were treated with 0, 0.3, 0.6, 1.2 mM FFA and LPS and IFN-γ or IL4 and IL10 for 24 h; (3) Macrophages were pretreated with 2 µM 4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine (MHY1485) for 30 min before treatment with LPS and IFN-γ or IL4 and IL10; (4) Macrophages were pretreated with 100 nM rapamycin (RAPA) for 2 h before treatment with LPS and IFN-γ or IL4 and IL10. Compared with healthy cows, cows with CK had a greater mean fluorescence intensity (MFI) of CD86+, but lower MFI of CD206+ and lower number of autophagosomes and autolysosomes in macrophages. Exogenous FFA treatment upregulated protein abundance of inducible nitric oxide synthase (iNOS) and mean fluorescence intensity of CD86, whereas it downregulated the protein abundance of arginase 1 (ARG1) and mean fluorescence intensity of CD206. In addition, FFA increased the p-p65/p65 protein abundance and tumor necrosis factor α (TNFA), interleukin-1B (IL1B), and interleukin-6 (IL6) mRNA abundance, but decreased LC3-phosphatidylethanolamine conjugate (LC3-II) protein abundance and autophagosomes and autolysosomes number. Pretreatment with MHY1485 promoted macrophage M1 polarization and inhibited macrophage M2 polarization via decreased mTOR-mediated autophagy. Activation of mTOR-mediated autophagy by pretreatment with RAPA attenuated the upregulation of inflammation in M1 macrophages that was induced by FFA. These data revealed that high concentrations of FFA promote macrophage M1 polarization in ketotic dairy cows via impairing mTOR-mediated autophagy.

8.
J Dairy Sci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067746

RESUMO

Postpartum cows experience lipolysis in adipose tissue due to negative energy balance (NEB), and accumulation of free fatty acids (FFA) leads to metabolic stress in adipose tissue. Ferroptosis is a type of cell death triggered by excessive buildup of iron-dependent lipid peroxides, which is involved in the occurrence and development of various metabolic diseases in nonruminants. However, it is still unclear whether ferroptosis occurs in the adipose tissue of ketotic cows and the regulatory mechanisms behind ferroptosis. Despite multiple studies demonstrating the significant involvement of hypoxia-inducible-factor-1α (HIF-1α) in regulating cellular dysfunction, its specific function in adipose tissue of ketotic dairy cows remains uncertain, particularly its regulation of oxidative stress and ferroptosis. The study aimed to explore the impact of HIF-1α on oxidative stress and ferroptosis in bovine subcutaneous adipose tissue and isolated adipocytes. The adipose tissue of clinical ketosis cows (n = 15) with a serum BHB concentration of 3.13 mM (interquartile range = 0.14) and healthy cows (n = 15) with a serum BHB concentration of and 0.58 mM (interquartile range = 0.13) was collected. The results showed that the concentrations of lipid peroxidation malondialdehyde (MDA), reactive oxygen species (ROS), Fe2+ and total iron were increased in adipose tissue of cows with ketosis, while the contents of glutathione (GSH) were reduced. Furthermore, the protein levels of HIF-1α, heme oxygenase 1 (HMOX1), catalase (CAT), superoxide dismutase 1 (SOD1), acyl-CoA synthetase 4 (ACSL4), and nuclear factor erythroid-derived 2-like 2 (NFE2L2) exhibited higher abundance in adipose tissue obtained from cows with ketosis, whereas the protein abundance of solute carrier family 7 member 11 (SLC7A11), glutamate cysteine ligase catalytic subunit (GCLC), kelch-like ECH-associated protein 1 (KEAP1), glutamate cysteine ligase regulatory subunit (GCLM) and glutathione peroxidase 4 (GPX4) were lower. To simulate the ferroptosis state of adipose tissue in ketotic cows, primary bovine adipocytes were isolated from the adipose tissue of healthy cows and cultured with erastin to construct ferroptosis model. Adipocytes were cultured with either an adenovirus overexpressing HIF-1α or small interfering RNA targeting HIF-for 48 h, followed by exposure to erastin (1 µM) for 24 h. Treatment with erastin led to higher protein abundance of CAT, SOD1, NFE2L2 and HMOX1, while it inhibited the protein expression levels of GCLC, SLC7A11, GCLM, GPX4 and KEAP1. Furthermore, erastin treatment elevated the levels of ROS, MDA, Fe2+, total iron and reduced the content of GSH. The overexpression of HIF-1α reversed the erastin-induced decreases in the protein abundance of GPX4 and SLC7A11, as well as the levels of MDA, ROS, Fe2+ and total iron, while significantly increasing protein abundance and content of CAT, SOD1, NFE2L2, HMOX1, GCLC, GCLM, GPX4, SLC7A11 and GSH. Conversely, the silencing of HIF-1α further exacerbated the erastin-induced levels of MDA, ROS, Fe2+ and total iron, while inhibiting the upregulation of SOD1, CAT, NFE2L2 and HMOX1. Collectively, these findings suggest that activation of HIF-1α may function as an adaptive mechanism to mitigate ferroptosis and alleviate oxidative stress in adipose tissue.

9.
J Integr Plant Biol ; 66(5): 897-908, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506424

RESUMO

The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Raios Ultravioleta , Arabidopsis/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Lipoxigenase/metabolismo , Lipoxigenase/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Lipoxigenases
10.
Funct Integr Genomics ; 23(1): 68, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849554

RESUMO

The principal aim of present study was to assess the therapeutic efficacy of bone morphogenetic protein-7 (BMP-7) induced differentiation of bone marrow mesenchymal stem cells (BMSCs) in a rat acute spinal cord injury (SCI) model. BMSCs were isolated from rats, and then divided into a control and a BMP-7 induction groups. The proliferation ability of BMSCs and glial cell markers were determined. Forty Sprague-Dawley (SD) rats were randomly divided into sham, SCI, BMSC, and BMP7 + BMSC groups (n = 10). Among these rats, the recovery of hind limb motor function, the pathological related markers, and motor evoked potentials (MEP) were identified. BMSCs differentiated into neuron-like cells after the introduction of exogenous BMP-7. Interestingly, the expression levels of MAP-2 and Nestin increased, whereas the expression level of GFAP decreased after the treatment with exogenous BMP-7. Furthermore, the Basso, Beattie, and Bresnahan (BBB) score reached 19.33 ± 0.58 in the BMP-7 + BMSC group at day 42. Nissl bodies in the model group were reduced compared to the sham group. After 42 days, in both the BMSC and BMP-7 + BMSC groups, the number of Nissl bodies increased. This is especially so for the number of Nissl bodies in the BMP-7 + BMSC group, which was more than that in the BMSC group. The expression of Tuj-1 and MBP in BMP-7 + BMSC group increased, whereas the expression of GFAP decreased. Moreover, the MEP waveform decreased significantly after surgery. Furthermore, the waveform was wider and the amplitude was higher in BMP-7 + BMSC group than that in BMSC group. BMP-7 promotes BMSC proliferation, induces the differentiation of BMSCsinto neuron-like cells, and inhibits the formation of glial scar. BMP-7 plays a confident role in the recovery of SCI rats.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Ratos , Animais , Proteína Morfogenética Óssea 7/genética , Ratos Sprague-Dawley , Diferenciação Celular , Traumatismos da Medula Espinal/terapia
11.
Anal Chem ; 95(41): 15146-15152, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37733965

RESUMO

The landscape of diagnostic assessments has experienced a paradigm shift driven by the advent of isothermal amplification techniques on point-of-care testing (POCT). The development of compact, portable isothermal amplification devices further emphasizes their transformative influence on diagnostic approaches. However, in prioritizing portability, these devices may exhibit limitations in functionality, rendering them less effective in addressing urgent public health emergencies during sudden pathogen outbreaks. In this paper, an efficient isothermal fluorescence amplification device has been fabricated for the rapid detection of pathogens during public health crises. The device features multichannel capability for simultaneous detection of various targets, integrates with the Internet of Medical Things (IoMT) for remote control and data uploading, and includes a deep learning-based batch processing system for rapid (9.4 ms) and accurate discrimination of pathogen type with excellent accuracy. The device has been successfully employed to simultaneously detect Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) with limits of detection (LODs) of 18 CFU/mL (SA) and 20 CFU/mL (MRSA) within 35 min by multiplex RPA assay and CRISPR/Cas12a-mediated nucleic acid detection assay.

12.
Anal Chem ; 95(15): 6433-6440, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37026469

RESUMO

Although promising in monitoring low-abundance analytes, most of the DNAzyme walker is only responsive to a specific target. Herein, a universal, ready-to-use platform is developed by coupling nicking-enhanced rolling circle amplification and a self-powered DNAzyme walker (NERSD). It addressed the issues that DNAzyme strands need to be specifically designed for different biosensing system, allowing highly sensitive analysis of various targets with the same DNAzyme walker components. It is also specific owing to target-dependent ligation of the padlock probe and precise cleavage of a substrate by a DNAzyme strand. As typically demonstrated, the strategy has an equivalent capacity with the qRT-PCR kit in distinguishing plasma miR-21 levels of breast cancer patients from normal subjects and is able to differentiate intracellular miR-21 and ATP levels by confocal imaging. The approach characteristic of programmability, flexibility, and generality indicated the potential in all kinds of biosensing and imaging platform.


Assuntos
DNA Catalítico , Diagnóstico por Imagem , MicroRNAs , Humanos , Diagnóstico por Imagem/métodos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico , MicroRNAs/análise
13.
Curr Issues Mol Biol ; 44(11): 5579-5592, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354690

RESUMO

Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been characterized. In this study, we isolated a cDNA encoding the signal transduction protein, ScCBL6, from S. capillacea, and evaluated its role in cold tolerance by ectopically expressing it in Arabidopsis. Full-length ScCBL6 encode 227 amino acids, and are clustered with CBL6 in Stipa purpurea and Oryza sativa in a phylogenetic analysis. Compared with tolerance in wild-type (WT) plants, ScCBL6-overexpressing plants (ScCBL6-OXP) were more tolerant to cold stress but not to drought stress, as confirmed by their high photosynthetic capacity (Fv/Fm) and survival rate under cold stress. We further compared their cold-responsive transcriptome profiles by RNA sequencing. In total, 3931 genes were differentially expressed by the introduction of ScCBL6. These gene products were involved in multiple processes such as the immune system, lipid catabolism, and secondary metabolism. A KEGG pathway analysis revealed that they were mainly enriched in plant hormone signal transduction and biomacromolecule metabolism. Proteins encoded by differentially expressed genes were predicted to be localized in chloroplasts, mitochondria, and vacuoles, suggesting that ScCBL6 exerts a wide range of functions. Based on its tonoplast subcellular location combined with integrated transcriptome and physiological analyses of ScCBL6-OXP, we inferred that ScCBL6 improves plant cold stress tolerance in Arabidopsis via the regulation of photosynthesis, redox status, and tonoplast metabolite transporters.

14.
Small ; 18(48): e2204341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36253146

RESUMO

The highest theoretical capacity and lowest redox potential of lithium metal make lithium-based batteries the "holy grail" of the next-generation batteries. However, the uncontrollable dendrite growth and infinite volume change of lithium seriously hinder the real-world implementation of lithium-based batteries. Herein, a flexible MXene@iodine-doped red phosphorus (MXene@RP) paper with iodine-doped red phosphorous particles evenly distributed on the surface and interlayer of MXene matrix is designed by a simple vapor condensation reduction approach. The MXene@RP paper can be used as an efficient matrix to enable dendrite-free lithium deposition. On the one hand, the iodine doping alleviates the low conductivity shortcoming of red phosphorus, making it facilitate homogeneous lithium nucleation, thus promoting uniform lithium deposition and suppressing dendrite growth. On the other hand, the unique layered structure of conductive MXene paper provides ion transport channels and free spaces for lithium loading, alleviating the volume change induced structural damage. As a result, the MXene@RP paper with preloaded lithium exhibits long-term cycling stability. Particularly, a full cell based on Li-MXene@RP anode can maintain 81.4% of the initial capacity after 600 cycles at 4 C. The MXene@RP-based anode increases the potential applications of MXene and provides a guide for the design of dendrite-free lithium hosts.

15.
Inorg Chem ; 61(38): 15116-15129, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094380

RESUMO

NH4Ln(MoO4)2 (Ln = La-Lu lanthanide, Y) was crystallized via hydrothermal reaction as a new family of layered materials, from which phase-pure Ln2Mo4O15 was successfully derived via subsequent annealing at 700 °C for the series of Ln elements excluding Ce and Lu. Detailed structure analysis revealed that the ionic size of Ln3+ decisively determined the crystal structure and Mo/Ln coordination for the two families of compounds. NH4Ln(MoO4)2 was analyzed to be orthorhombic (Pbcn space group, no. 60) and monoclinic (P2/c, no. 13) for the larger and smaller Ln3+ of Ln = La-Gd and Ln = Tb-Lu (including Y), respectively, where both the crystal structures have a layered topology featured by the alternative stacking of a [Ln(MoO4)2]- three-tier infinite anionic layer and interlayer NH4+. Four types of crystal structures were found for the Ln2Mo4O15 series, which are monoclinic (P21/a, no. 14) for Ln = La, triclinic (P1̅, no. 2) for Ln = Pr-Sm, triclinic (P1̅, no. 2) for Ln = Eu and Gd, and monoclinic (P21/c, no. 14) for Ln = Tb-Yb (including Y). The photoluminescence of NH4Ln(MoO4)2 (Ln = Eu, Tb) and Ln2Mo4O15:Eu3+ (Ln = La, Gd, Y) was thoroughly investigated in terms of spectral features, quantum efficiency, fluorescence decay, and CIE chromaticity. The thermal stability of luminescence was also studied for Ln2Mo4O15:Eu3+, and the observed charge-transfer excitation components were successfully correlated with the features of the Mo-O polyhedron/unit.

16.
J Nat Prod ; 85(10): 2424-2432, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36122348

RESUMO

Because of the abnormal upregulation of matrix metalloproteinase (MMP) activities in tumors, MMP inhibitors (MMPIs) are validated anticancer drug candidates. We identified several MMPIs including mangiferin as an MMP-9 inhibitor with a half maximal inhibitory concentration (IC50) value of 250 nM, isosilybin as an MMP-13 inhibitor with an IC50 value of 250 nM, and isoliquiritigenin as a broad-spectrum MMPI (with IC50 values of 16 nM for MMP-1, 10 nM for MMP-2, 81 nM for MMP-3, 8 nM for MMP-7, 10 nM for MMP-9, and 14 nM for MMP-13) through studying the interactions of 6 MMPs secreted by U-2OS cells with 51 phenolic natural products on the peptide microarray platform. In addition, the inhibitory mechanisms of as-discovered MMPIs were evaluated by a molecular docking simulation. The antitumor efficiencies of MMPIs were demonstrated by both a cell scratch test and growth suppression of mouse-born OS tumors. The results of the cell scratch test suggested that isoliquiritigenin significantly inhibited the migration of U-2OS cells. In addition, administration of isoliquiritigenin significantly reduced the tumor size (by about 80%) and prolonged the survival time (by more than 70 days). This study suggests that the discovery of MMPIs from phenolic natural products is a meaningful way to screen anticancer agents.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinase 9 da Matriz , Metaloproteinase 13 da Matriz , Simulação de Acoplamento Molecular , Osteossarcoma/tratamento farmacológico , Metaloproteinases da Matriz/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Peptídeos
17.
J Chem Phys ; 157(13): 134706, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209009

RESUMO

Concernin the crucial interfacial issues in multi-layered kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells, (NH4)2S treatment has been proven to be effective in eliminating surface secondary phases. While for the CZTSSe absorbers without impurity phases, what can the low-temperature (NH4)2S treatment do to the absorbers, thus to the device performance? Herein, the chloride-fabricated CZTSSe absorbers are surface treated with the (NH4)2S solution at room temperature, and its influence on the device performance is investigated in detail. Surprisingly, such treatment can make the absorbers' surface become nearly super-hydrophilicity, greatly decreasing the surface wetting angle from 63.1° ± 3.4° to 7.3° ± 0.6° after 50 min-treating, and thus lead to marked differences in the interfacial properties of the CdS/CZTSSe heterojunctions deposited in a chemical bath. Consequently, for the best-performing CZTSSe cells, combining the passivated interfacial defects, increased carrier concentration, reduced carrier recombination, and prolonged minority lifetime, the efficiency is improved from 6.54% to 9.88%, together with the 37 mV and 7.9% increase in VOC and FF, respectively. This study confirms the newfound results that the (NH4)2S treatment can effectively adjust the wettability of the absorbers to form high-quality heterojunctions to boost the device efficiency, which would be valuable for an in-depth understanding of the intrinsic mechanisms of interfacial processing.

18.
J Dairy Sci ; 105(11): 9191-9205, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114053

RESUMO

Adipose tissue of ketotic dairy cows exhibits greater lipolytic rate and signs of inflammation, which further aggravate the metabolic disorder. In nonruminants, the endoplasmic reticulum (ER) is a key organelle coordinating metabolic adaptations and cellular functions; thus, disturbances known as ER stress lead to inflammation and contribute to metabolic disorders. Enhanced activity of diacylglycerol O-acyltransferase 1 (DGAT1) in murine adipocytes undergoing lipolysis alleviated ER stress and inflammation. The aim of the present study was to investigate the potential role of DGAT1 on ER stress and inflammatory response of bovine adipose tissue in vivo and in vitro. Adipose tissue and blood samples were collected from cows diagnosed as clinically ketotic (n = 15) or healthy (n = 15) following a veterinary evaluation based on clinical symptoms and serum concentrations of ß-hydroxybutyrate, which were 4.05 (interquartile range = 0.46) and 0.52 mM (interquartile range = 0.14), respectively. Protein abundance of DGAT1 was greater in adipose tissue of ketotic cows. Among ER stress proteins measured, ratios of phosphorylated PKR-like ER kinase (p-PERK) to PERK and phosphorylated inositol-requiring enzyme 1 (p-IRE1) to IRE1, and protein abundance of cleaved ATF6 protein were greater in adipose tissue of ketotic cows. Furthermore, ratios of phosphorylated RELA subunit of NF-κB (p-RELA) to RELA and phosphorylated c-jun N-terminal kinase (p-JNK) to JNK were greater, whereas protein abundance of NF-κB inhibitor α (NFKBIA) was lower in adipose tissue of ketotic cows. In addition, mRNA abundance of proinflammatory cytokines including TNF and IL-6 was greater in adipose tissue of ketotic cows. To better address mechanistic aspects of these responses, primary bovine adipocytes isolated from the harvested adipose tissue of healthy cows were subjected to lipolysis-stimulating conditions via incubation with 1 µM epinephrine (EPI) for 2 h. In another experiment, adipocytes were cultured with DGAT1 overexpression adenovirus and DGAT1 small interfering RNA for 48 h, respectively, followed by EPI (1 µM) exposure for 2 h. Treatment with EPI led to greater ratios of p-PERK to PERK, p-IRE1 to IRE1, p-RELA to RELA, p-JNK to JNK, and cleaved ATF6 protein, whereas EPI stimulation inhibited protein abundance of NFKBIA. Furthermore, treatment with EPI upregulated the secretion of proinflammatory cytokines into culture medium, including TNF-α and IL-6. Overexpression of DGAT1 in EPI-treated adipocytes attenuated ER stress, the activation of NF-κB and JNK signaling pathways, and the secretion of inflammatory cytokines. In contrast, silencing DGAT1 further aggravated EPI-induced ER stress and inflammatory responses. Overall, these data indicated that activation of DGAT1 may act as an adaptive mechanism to dampen metabolic dysregulation in adipose tissue. As such, it contributes to relief from ER stress and inflammatory responses.


Assuntos
Cetose , Doenças dos Roedores , Feminino , Bovinos , Animais , Camundongos , Ácido 3-Hidroxibutírico , Diacilglicerol O-Aciltransferase/metabolismo , Estresse do Retículo Endoplasmático , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cetoses/metabolismo , Cetoses/farmacologia , RNA Interferente Pequeno/metabolismo , Interleucina-6/metabolismo , Cetose/veterinária , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Choque Térmico/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Epinefrina/farmacologia , RNA Mensageiro/metabolismo , Inositol/metabolismo , Inositol/farmacologia , Doenças dos Roedores/metabolismo
19.
Sensors (Basel) ; 22(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632314

RESUMO

A low-cost and power-efficient video surveillance system, named XDMOM, is developed for real-time moving object detection outdoors or in the wild. The novel system comprises four parts: imaging subsystem, video processing unit, power supply, and alarm device. The imaging subsystem, which consists of a dual-spectrum camera and rotary platform, can realize 360-degree and all-day monitoring. The video processing unit uses a power-efficient NVIDIA GeForce GT1030 chip as the processor, which ensures the power consumption of the whole system maintains a low level of 60~70 W during work. A portable lithium battery is employed to supply power so that the novel system can be used anywhere. The work principle is also studied in detail. Once videos are recorded, the single-stage neural network YOLOv4-tiny is employed to detect objects in a single frame, and an adaptive weighted moving pipeline filter is developed to remove pseudo-targets in the time domain, thereby reducing false alarms. Experimental results show that the overall correct alarm rate of the novel system could reach 85.17% in the daytime and 81.79% at night when humans are monitored in real outdoor environments. The good performance of the novel system is demonstrated by comparison with state-of-the-art video surveillance systems.


Assuntos
Algoritmos , Sistemas Computacionais , Humanos , Monitorização Fisiológica , Redes Neurais de Computação
20.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216201

RESUMO

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family comprises plant-specific transcription factors that control cell proliferation and differentiation during growth and development in many plant species. However, to date, no studies of the LBD gene family in Dendrobium catenatum have been reported. In this study, a genome-wide analysis of LBD genes was performed in D. catenatum and 24 LBD genes were identified. The genes were classified into two classes (I and II) based on phylogenetic relationships and motif structure. Subcellular localization analysis for DcaLBD6 and DcaLBD18 from class I and DcaLBD37 and DcaLBD41 from class II revealed that the proteins were localized in the nucleus. Transient expression analysis of DcaLBD6, DcaLBD18, DcaLBD37, and DcaLBD41 indicated that class I and class II members have opposite roles in regulating VASCULAR-RELATED NAC-DOMAIN 7 (VND7) expression. DcaLBD genes showed diverse expression patterns in response to different phytohormone treatments. Heat maps revealed diverse patterns of DcaLBD gene expression in different organs. These results lay the foundation for further detailed studies of the LBD gene family in D. catenatum.


Assuntos
Dendrobium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Família Multigênica/genética , Filogenia , Reguladores de Crescimento de Plantas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA