Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(24): 4228-4240, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35904445

RESUMO

Polycystic kidney disease (PKD) is a ciliopathy characterized by fluid-filled epithelial cysts in the kidney. Although it is well established that the primary cilium is essential for hedgehog (HH) signaling and HH signaling is abnormally activated in multiple PKD models, the mechanism and function of HH activation in PKD pathogenesis remain incompletely understood. Here we used a transgenic HH reporter mouse line to identify the target tissue of HH signaling in Arl13f/f;Ksp-Cre mutant kidney, in which the cilia biogenesis gene Arl13b is specifically deleted in epithelial cells of the distal nephron. In addition, we used a co-culture system to dissect cross-talk between epithelial and mesenchymal cells in the absence of expanding cysts. Finally, we treated Arl13bf/f;Ksp-Cre mice with the GLI inhibitor GANT61 and analyzed its impact on PKD progression in this model. We found that deletion of Arl13b in epithelial cells in the mouse kidney, in vivo, led to non-cell-autonomous activation of the HH pathway in the interstitium. In vitro, when co-cultured with mesenchymal cells, Arl13b-/- epithelial cells produced more sonic hedgehog in comparison to cells expressing Arl13b. Reciprocally, HH signaling was activated in mesenchymal cells co-cultured with Arl13b-/- epithelial cells. Finally, whole body inhibition of the HH pathway by GANT61 reduced the number of proliferating cells, inhibited cyst progression and fibrosis and preserved kidney function in Arl13bf/f;Ksp-Cre mice. Our results reveal non-cell-autonomous activation of HH signaling in the interstitium of the Arl13bf/f;Ksp-Cre kidney and suggest that abnormal activation of the HH pathway contributes to disease progression.


Assuntos
Ciliopatias , Cistos , Doenças Renais Císticas , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Doenças Renais Císticas/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Ciliopatias/genética , Progressão da Doença
2.
Small ; : e2301074, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659180

RESUMO

The coating of filter media with silver is typically achieved by chemical deposition and aerosol processes. Whilst useful, such approaches struggle to provide uniform coating and are prone to blockage. To address these issues, an in situ method for coating glass fibers is presented via the dopamine-mediated electroless metallization method, yielding filters with low air resistance and excellent antibacterial performance. It is found that the filtration efficiency of the filters is between 94 and 97% and much higher than that of silver-coated filters produced using conventional dipping methods (85%). Additionally, measured pressure drops ranged between 100 and 150 Pa, which are lower than those associated with dipped filters (171.1 Pa). Survival rates of Escherichia coli and Bacillus subtilis bacteria exposed to the filters decreased to 0 and 15.7%±1.49, respectively after 2 h, with no bacteria surviving after 6 h. In contrast, survival rates of E. coli and B. subtilis bacteria on the uncoated filters are 92.5% and 89.5% after 6 h. Taken together, these results confirm that the in situ deposition of silver onto fiber surfaces effectively reduces pore clogging, yielding low air resistance filters that can be applied for microbial filtration and inhibition in a range of environments.

3.
J Environ Manage ; 359: 121078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723503

RESUMO

Peracetic acid (PAA) combined with free ammonia (FA) pretreatment can be utilized to promote anaerobic fermentation (AF) of waste activated sludge (WAS) to produce short-chain fatty acids (SCFAs), and the resulting SCFAs are desirable carbon sources (C-sources) for polyhydroxyalkanoate (PHA) biosynthesis. This work aimed to determine the optimum conditions for PAA + FA pretreatment of sludge AF and the feasibility of using anaerobic fermentation liquor (AFL) for PHA production. To reveal the mechanisms of integrated pretreatment, the impacts of PAA + FA pretreatment on different stages of sludge AF and changes in the microbial community structure were explored. The experimental results showed that the maximum SCFA yield reached 491.35 ± 6.02 mg COD/g VSS on day 5 after pretreatment with 0.1 g PAA/g VSS +70 mg FA/L, which was significantly greater than that resulting from PAA or FA pretreatment alone. The mechanism analysis showed that PAA + FA pretreatment promoted sludge solubilization but strongly inhibited methanogenesis. According to the analysis of the microbial community, PAA + FA pretreatment changed the microbial community structure and promoted the enrichment of bacteria related to hydrolysis and acidification, and Proteiniclasticum, Macellibacteroides and Petrimonas became the dominant hydrolytic and acidifying bacteria. Finally, after alkali treatment, the AFL was utilized for batch-mode PHA production, and a maximum PHA yield of 55.05 wt% was achieved after five operation periods.


Assuntos
Amônia , Ácidos Graxos Voláteis , Fermentação , Poli-Hidroxialcanoatos , Esgotos , Poli-Hidroxialcanoatos/biossíntese , Amônia/metabolismo , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos
4.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628968

RESUMO

Enhancing the absorption and utilization of phosphorus by crops is an important aim for ensuring food security worldwide. However, the gene regulatory network underlying phosphorus use in foxtail millet remains unclear. In this study, the molecular mechanism underlying low-phosphorus (LP) responsiveness in foxtail millet was evaluated using a comparative transcriptome analysis. LP reduced the chlorophyll content in shoots, increased the anthocyanin content in roots, and up-regulated purple acid phosphatase and phytase activities as well as antioxidant systems (CAT, POD, and SOD). Finally, 13 differentially expressed genes related to LP response were identified and verified using transcriptomic data and qRT-PCR. Two gene co-expression network modules related to phosphorus responsiveness were positively correlated with POD, CAT, and PAPs. Of these, SiPHR1, functionally annotated as PHOSPHATE STARVATION RESPONSE 1, was identified as an MYB transcription factor related to phosphate responsiveness. SiPHR1 overexpression in Arabidopsis significantly modified the root architecture. LP stress caused cellular, physiological, and phenotypic changes in seedlings. SiPHR1 functioned as a positive regulator by activating downstream genes related to LP tolerance. These results improve our understanding of the molecular mechanism underlying responsiveness to LP stress, thereby laying a theoretical foundation for the genetic modification and breeding of new LP-tolerant foxtail millet varieties.


Assuntos
Arabidopsis , Setaria (Planta) , Transcriptoma , Setaria (Planta)/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Antocianinas
5.
BMC Plant Biol ; 22(1): 105, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260077

RESUMO

BACKGROUND: The grains of foxtail millet are enriched in carotenoids, which endow this plant with a yellow color and extremely high nutritional value. However, the underlying molecular regulation mechanism and gene coexpression network remain unclear. METHODS: The carotenoid species and content were detected by HPLC for two foxtail millet varieties at three panicle development stages. Based on a homologous sequence BLAST analysis, these genes related to carotenoid metabolism were identified from the foxtail millet genome database. The conserved protein domains, chromosome locations, gene structures and phylogenetic trees were analyzed using bioinformatics tools. RNA-seq was performed for these samples to identify differentially expressed genes (DEGs). A Pearson correlation analysis was performed between the expression of genes related to carotenoid metabolism and the content of carotenoid metabolites. Furthermore, the expression levels of the key DEGs were verified by qRT-PCR. The gene coexpression network was constructed by a weighted gene coexpression network analysis (WGCNA). RESULT: The major carotenoid metabolites in the panicles of DHD and JG21 were lutein and ß-carotene. These carotenoid metabolite contents sharply decreased during the panicle development stage. The lutein and ß-carotene contents were highest at the S1 stage of DHD, with values of 11.474 µg /100 mg and 12.524 µg /100 mg, respectively. Fifty-four genes related to carotenoid metabolism were identified in the foxtail millet genome. Cis-acting element analysis showed that these gene promoters mainly contain 'plant hormone', 'drought stress resistance', 'MYB binding site', 'endosperm specific' and 'seed specific' cis-acting elements and especially the 'light-responsive' and 'ABA-responsive' elements. In the carotenoid metabolic pathways, SiHDS, SiHMGS3, SiPDS and SiNCED1 were more highly expressed in the panicle of foxtail millet. The expression of SiCMT, SiAACT3, SiPSY1, SiZEP1/2, and SiCCD8c/8d was significantly correlated with the lutein content. The expression of SiCMT, SiHDR, SiIDI2, SiAACT3, SiPSY1, and SiZEP1/2 was significantly correlated with the content of ß-carotene. WGCNA showed that the coral module was highly correlated with lutein and ß-carotene, and 13 structural genes from the carotenoid biosynthetic pathway were identified. Network visualization revealed 25 intramodular hub genes that putatively control carotenoid metabolism. CONCLUSION: Based on the integrative analysis of the transcriptomics and carotenoid metabonomics, we found that DEGs related to carotenoid metabolism had a stronger correlation with the key carotenoid metabolite content. The correlation analysis and WGCNA identified and predicted the gene regulation network related to carotenoid metabolism. These results lay the foundation for exploring the key target genes regulating carotenoid metabolism flux in the panicle of foxtail millet. We hope that these target genes could be used to genetically modify millet to enhance the carotenoid content in the future.


Assuntos
Carotenoides/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Metabolômica , Sementes/genética , Sementes/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , China , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Variação Genética , Genótipo
6.
Ann Hepatol ; 27 Suppl 1: 100571, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718169

RESUMO

INTRODUCTION AND OBJECTIVES: Long non-coding RNAs (lncRNAs) have great potential as therapeutic targets in hepatocellular carcinoma (HCC). In this study, we aimed to uncover the function and molecular mechanism of long intergenic non-protein coding RNA 1006 (LINC01006) in HCC. MATERIALS AND METHODS: Mice were injected with HCC cells in order to establish the HCC model. Quantitative reverse transcription polymerase chain reaction was used to determine the expression levels of LINC01006, cell adhesion molecule 1 (CADM1), and microRNA (miR)-194-5p in HCC tissues and cells. The cell proliferation, invasion, and migration abilities were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, transwell, and wound healing assays. The interrelation between LINC01006, miR-194-5p, and CADM1 was confirmed by a dual-luciferase reporter assay. Western blotting was employed to assess the relative protein expression level of CADM1. RESULTS: LINC01006 and CADM1 displayed upregulation, but miR-194-5p exhibited downregulation in HCC cells and tissues. Short hairpin (sh)-LINC01006 and miR-194-5p mimics repressed the proliferative, migratory, and invasive capacities of HCC cells, and injection of sh-LINC01006 restrained the growth of HCC tumours in mice. LINC01006 served as a competing endogenous RNA of miR-194-5p and was inversely correlated with miR-194-5p. CADM1 was targeted by miR-194-5p, inversely correlated with miR-194-5p, and positively associated with LINC01006. Furthermore, transfection of pcDNA-CADM1 or the miR-194-5p inhibitor reversed the suppressive effects of sh-LINC01006 on the proliferation, invasion, and migration abilities of HCC cells. CONCLUSIONS: Downregulation of LINC01006 repressed the development of HCC by sponging miR-194-5p to modulate the expression of CADM1, implying its potential as a therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/patologia , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
J Sci Food Agric ; 102(1): 268-279, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34109642

RESUMO

BACKGROUND: Foxtail millet grain has higher folate content than other cereal crops. However, the folate metabolite content and the expression patterns of folate metabolite-related genes are unknown. RESULTS: Liquid chromatography-mass spectrometry was used to investigate 12 folate metabolites in a foxtail millet panicle. The content of total folate and derivatives gradually decreased during panicle development. Polyglutamate 5-formyl-tetrahydrofolate was the major form. Twenty-eight genes involved in the folate metabolic pathway were identified through bioinformatic analysis. These genes in Setaria italica, S. viridis and Zea mays showed genomic collinearity. Phylogenetic analysis revealed that the folate-related genes were closely related among the C4 plants compared to C3 plants. The gene expressions were then studied at three panicle development stages. The gene expression patterns were classified into two groups, namely SiADCL1 and SiGGH as two key enzymes, which are responsible for folate synthesis and degradation; their expression levels were highest at the early panicle development stage, up to 179.11- and 163.88-fold, respectively. Their expression levels had a similar downward trend during panicle development and were significantly positively correlated with the concentration of total folate and folate derivatives. However, SiSHMT3 expression levels were significantly negatively correlated with total folate concentration. CONCLUSION: Besides being the major determinants of folate and folate derivatives accumulation, SiADCL1 and SiGGH expression levels are key limiting factors in the foxtail millet panicle. Therefore, SiADCL1 and SiGGH expression levels can be targeted in genetic modification studies to improve folate content in foxtail millet seeds in the future. © 2021 Society of Chemical Industry.


Assuntos
Ácido Fólico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Metabolômica , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/crescimento & desenvolvimento
8.
Hum Mol Genet ; 28(1): 16-30, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215740

RESUMO

Polycystin-1 (PC1), encoded by the PKD1 gene that is mutated in the autosomal dominant polycystic kidney disease, regulates a number of processes including bone development. Activity of the transcription factor RunX2, which controls osteoblast differentiation, is reduced in Pkd1 mutant mice but the mechanism governing PC1 activation of RunX2 is unclear. PC1 undergoes regulated cleavage that releases its C-terminal tail (CTT), which translocates to the nucleus to modulate transcriptional pathways involved in proliferation and apoptosis. We find that the cleaved CTT of PC1 (PC1-CTT) stimulates the transcriptional coactivator TAZ (Wwtr1), an essential coactivator of RunX2. PC1-CTT physically interacts with TAZ, stimulating RunX2 transcriptional activity in pre-osteoblast cells in a TAZ-dependent manner. The PC1-CTT increases the interaction between TAZ and RunX2 and enhances the recruitment of the p300 transcriptional co-regulatory protein to the TAZ/RunX2/PC1-CTT complex. Zebrafish injected with morpholinos directed against pkd1 manifest severe bone calcification defects and a curly tail phenotype. Injection of messenger RNA (mRNA) encoding the PC1-CTT into pkd1-morphant fish restores bone mineralization and reduces the severity of the curly tail phenotype. These effects are abolished by co-injection of morpholinos directed against TAZ. Injection of mRNA encoding a dominant-active TAZ construct is sufficient to rescue both the curly tail phenotype and the skeletal defects observed in pkd1-morpholino treated fish. Thus, TAZ constitutes a key mechanistic link through which PC1 mediates its physiological functions.


Assuntos
Desenvolvimento Ósseo/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Canais de Cátion TRPP/fisiologia , Animais , Apoptose , Desenvolvimento Ósseo/fisiologia , Diferenciação Celular , Proteína p300 Associada a E1A/fisiologia , Regulação da Expressão Gênica , Genes Reguladores , Células HEK293 , Humanos , Rim/metabolismo , Modelos Animais , Morfolinos , Osteoblastos/metabolismo , Osteogênese/fisiologia , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
BMC Plant Biol ; 21(1): 206, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931042

RESUMO

BACKGROUND: Tartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry. METHODS: Heifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutant ftdm was selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) and ftdm plants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT and ftdm mutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM). RESULT: The plant height (PH) of the ftdm mutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of the ftdm mutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of the ftdm mutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of the ftdm mutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of the ftdm mutant. CONCLUSION: We report a Tartary buckwheat EMS dwarf mutant, ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in the ftdm mutant, and 12 DEGs expressed in the stems of the ftdm mutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in the SKIP14 gene in the ftdm mutant, and this gene had a lower transcript level compared with that in the WT.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Fagopyrum/anatomia & histologia , Fagopyrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Mutação , Fenótipo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
10.
Annu Rev Genet ; 47: 353-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24016188

RESUMO

Once obscure, the cilium has come into the spotlight during the past decade. It is now clear that aside from generating locomotion by motile cilia, both motile and immotile cilia serve as signaling platforms for the cell. Through both motility and sensory functions, cilia play critical roles in development, homeostasis, and disease. To date, the cilium proteome contains more than 1,000 different proteins, and human genetics is identifying new ciliopathy genes at an increasing pace. Although assigning a function to immotile cilia was a challenge not so long ago, the myriad of signaling pathways, proteins, and biological processes associated with the cilium have now created a new obstacle: how to distill all these interactions into specific themes and mechanisms that may explain how the organelle serves to maintain organism homeostasis. Here, we review the basics of cilia biology, novel functions associated with cilia, and recent advances in cilia genetics, and on the basis of this framework, we further discuss the meaning and significance of ciliary connections.


Assuntos
Cílios/fisiologia , Anormalidades Múltiplas , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/fisiopatologia , Movimento Celular , Doenças Cerebelares/genética , Doenças Cerebelares/fisiopatologia , Cerebelo/anormalidades , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Dano ao DNA , Reparo do DNA , Modelos Animais de Doenças , Encefalocele/genética , Encefalocele/fisiopatologia , Anormalidades do Olho/genética , Anormalidades do Olho/fisiopatologia , Flagelos/fisiologia , Flagelos/ultraestrutura , Síndrome de Heterotaxia/genética , Síndrome de Heterotaxia/fisiopatologia , Homeostase , Humanos , Doenças Renais Císticas/congênito , Doenças Renais Císticas/genética , Doenças Renais Císticas/fisiopatologia , Proteínas Motores Moleculares/fisiologia , Sistema Nervoso/citologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/fisiopatologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/fisiopatologia , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/fisiopatologia , Retina/anormalidades , Retina/fisiopatologia , Retinose Pigmentar
11.
Development ; 144(24): 4684-4693, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113992

RESUMO

Pontin (Ruvbl1) and Reptin (Ruvbl2) are closely related AAA ATPases. They are components of the Ruvbl1-Ruvbl2-Tah1-Pih1 (R2TP) complexes that function as co-chaperones for the assembly of multiple macromolecular protein complexes. Here, we show that Pontin is essential for cilia motility in both zebrafish and mouse and that Pontin and Reptin function cooperatively in this process. Zebrafish pontin mutants display phenotypes tightly associated with cilia defects, and cilia motility is lost in a number of ciliated tissues along with a reduction in the number of outer and inner dynein arms. Pontin protein is enriched in cytosolic puncta in ciliated cells in zebrafish embryos. In mouse testis, Pontin is essential for the stabilization of axonemal dynein intermediate chain 1 (DNAI1) and DNAI2, the first appreciated step in axonemal dynein arm assembly. Strikingly, multiple dynein arm assembly factors show structural similarities to either Tah1 or Pih1, the other two components of the R2TP complex. Based on these results, we propose that Pontin and Reptin function to facilitate dynein arm assembly in cytosolic foci enriched with R2TP-like complexes.


Assuntos
Axonema/metabolismo , DNA Helicases/genética , Proteínas Nucleares/genética , Motilidade dos Espermatozoides/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Cílios/patologia , Cílios/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Masculino , Camundongos , Camundongos Knockout , Movimento
12.
Plant Biotechnol J ; 17(1): 33-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29729208

RESUMO

Carotenoids are critically important to plants and humans. The ORANGE (OR) gene is a key regulator for carotenoid accumulation, but its physiological roles in crops remain elusive. In this study, we generated transgenic tomato ectopically overexpressing the Arabidopsis wild-type OR (AtORWT ) and a 'golden SNP'-containing OR (AtORHis ). We found that AtORHis initiated chromoplast formation in very young fruit and stimulated carotenoid accumulation at all fruit developmental stages, uncoupled from other ripening activities. The elevated levels of carotenoids in the AtOR lines were distributed in the same subplastidial fractions as in wild-type tomato, indicating an adaptive response of plastids to sequester the increased carotenoids. Microscopic analysis revealed that the plastid sizes were increased in both AtORWT and AtORHis lines at early fruit developmental stages. Moreover, AtOR overexpression promoted early flowering, fruit set and seed production. Ethylene production and the expression of ripening-associated genes were also significantly increased in the AtOR transgenic fruit at ripening stages. RNA-Seq transcriptomic profiling highlighted the primary effects of OR overexpression on the genes in the processes related to RNA, protein and signalling in tomato fruit. Taken together, these results expand our understanding of OR in mediating carotenoid accumulation in plants and suggest additional roles of OR in affecting plastid size as well as flower and fruit development, thus making OR a target gene not only for nutritional biofortification of agricultural products but also for alteration of horticultural traits.


Assuntos
Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Expressão Ectópica do Gene , Frutas/crescimento & desenvolvimento , Genes de Plantas/genética , Proteínas de Choque Térmico HSP40/genética , Solanum lycopersicum/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Frutas/metabolismo , Genes de Plantas/fisiologia , Proteínas de Choque Térmico HSP40/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
13.
J Environ Manage ; 248: 109280, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326726

RESUMO

Robustness and cost effectiveness are major concerns for sustainable stormwater management under deep uncertainty of climate change. Given that many traditional static planning strategies are not working with unpredictable future conditions, the possibility of system failure, and the lock-in effects, the Adaptation Pathway (AP) approach was adopted for dynamically robust and cost-effective planning in this paper. In order to increase optimization accuracy of multi-staged planning, a continuous definition of the AP optimization problem was raised by improving the simplified versions in existing studies. A case study in Suzhou, a provincial pilot Sponge City in China undergoing increasing annual rainfall and severe water environment deterioration, was included by integrating Long-Term Hydrologic Impact Assessment-Low Impact Development model with optimization methods, aiming to persistently control the non-point source total phosphorus loading below an acceptable amount in the following unforeseen 20 years via multi-staged low-impact development (LID) construction. A novel optimization method developed by the authors in a companion paper, namely marginal-cost-based greedy strategy (MCGS), was successfully applied to efficiently solve the continuous version of the AP optimization problem. The popular genetic algorithm (GA) was used as a contrast. A weather generator was elaborated based on four Representative Concentration Pathway scenarios and 17 spatial downscaled general circulation models to simulate the unforeseen future annual rainfalls that helped with evaluating cost effectiveness of each prospective LID plan. Results showed that the adaptation pathways optimized by MCGS could save the whole life net present cost of an LID plan by 1%-60% compared with those optimized by GA, and the computational efficiency of MCGS was over 13 times faster than GA.


Assuntos
Mudança Climática , Planejamento Social , China , Cidades , Estudos Prospectivos , Incerteza
14.
J Biol Chem ; 292(43): 17703-17717, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28848045

RESUMO

Primary cilia are hairlike extensions of the plasma membrane of most mammalian cells that serve specialized signaling functions. To traffic properly to cilia, multiple cilia proteins rely on palmitoylation, the post-translational attachment of a saturated 16-carbon lipid. However, details regarding the mechanism of how palmitoylation affects cilia protein localization and function are unknown. Herein, we investigated the protein ADP-ribosylation factor-like GTPase 13b (ARL13b) as a model palmitoylated ciliary protein. Using biochemical, cellular, and in vivo studies, we found that ARL13b palmitoylation occurs in vivo in mouse kidneys and that it is required for trafficking to and function within cilia. Myristoylation, a 14-carbon lipid, is shown to largely substitute for palmitoylation with regard to cilia localization of ARL13b, but not with regard to its function within cilia. The functional importance of palmitoylation results in part from a dramatic increase in ARL13b stability, which is not observed with myristoylation. Additional results show that blockade of depalmitoylation slows the degradation of ARL13b that occurs during cilia resorption, raising the possibility that the sensitivity of ARL13b stability to palmitoylation may be exploited by the cell to accelerate degradation of ARL13b by depalmitoylating it. Together, the results show that palmitoylation plays a unique and critical role in controlling the localization, stability, abundance, and thus function of ARL13b. Pharmacological manipulation of protein palmitoylation may be a strategy to alter cilia function.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Lipoilação/fisiologia , Fatores de Ribosilação do ADP/genética , Animais , Cílios/enzimologia , Cílios/genética , Estabilidade Enzimática/fisiologia , Células HEK293 , Humanos , Camundongos , Transporte Proteico/fisiologia
15.
J Am Soc Nephrol ; 27(12): 3628-3638, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27153923

RESUMO

The gene for ADP ribosylation factor-like GTPase 13B (Arl13b) encodes a small GTPase essential for cilia biogenesis in multiple model organisms. Inactivation of arl13b in zebrafish leads to a number of phenotypes indicative of defective cilia, including cystic kidneys. In mouse, null mutation in Arl13b results in severe patterning defects in the neural tube and defective Hedgehog signaling. Human mutations of ARL13B lead to Joubert syndrome, a ciliopathy. However, patients with mutated ARL13B do not develop kidney cysts. To investigate whether Arl13b has a role in ciliogenesis in mammalian kidney and whether loss of function of Arl13b leads to cystic kidneys in mammals, we generated a mouse model with kidney-specific conditional knockout of Arl13b Deletion of Arl13b in the distal nephron at the perinatal stage led to a cilia biogenesis defect and rapid kidney cyst formation. Additionally, we detected misregulation of multiple pathways in the cystic kidneys of this model. Moreover, valproic acid, a histone deacetylase inhibitor that we previously showed slows cyst progression in a mouse cystic kidney model with neonatal inactivation of Pkd1, inhibited the early rise of Wnt7a expression, ameliorated fibrosis, slowed cyst progression, and improved kidney function in the Arl13b mutant mouse. Finally, in rescue experiments in zebrafish, all ARL13B allele combinations identified in patients with Joubert syndrome provided residual Arl13b function, supporting the idea that the lack of cystic kidney phenotype in human patients with ARL13B mutations is explained by the hypomorphic nature of the mutations.


Assuntos
Fatores de Ribosilação do ADP/genética , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Deleção de Genes , Doenças Renais Císticas/genética , Mutação , Retina/anormalidades , Animais , Humanos , Camundongos , Peixe-Zebra
16.
Hum Mol Genet ; 23(12): 3307-15, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24488770

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy with multisystem involvement. So far, 18 BBS genes have been identified and the majority of them are essential for the function of BBSome, a protein complex involved in transporting membrane proteins into and from cilia. Yet defects in the identified genes cannot account for all the BBS cases. The genetic heterogeneity of this disease poses significant challenge to the identification of additional BBS genes. In this study, we coupled human genetics with functional validation in zebrafish and identified IFT27 as a novel BBS gene (BBS19). This is the first time an intraflagellar transport (IFT) gene is implicated in the pathogenesis of BBS, highlighting the genetic complexity of this disease.


Assuntos
Síndrome de Bardet-Biedl/enzimologia , Síndrome de Bardet-Biedl/patologia , Consanguinidade , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Adolescente , Sequência de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Evolução Molecular , Exoma , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Linhagem , Mutação Puntual , Arábia Saudita , Alinhamento de Sequência , Peixe-Zebra
17.
Am J Hum Genet ; 93(2): 336-45, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23891469

RESUMO

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


Assuntos
Cílios/genética , Síndrome de Kartagener/genética , Proteínas/genética , Sistema Respiratório/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Exoma , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Linhagem , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Ratos , Sistema Respiratório/patologia , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Genet Med ; 18(10): 1044-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26820066

RESUMO

PURPOSE: Leber congenital amaurosis (LCA) is an early-onset form of retinal degeneration. Six of the 22 known LCA genes encode photoreceptor ciliary proteins. Despite the identification of 22 LCA genes, the genetic basis of ~30% of LCA patients remains unknown. We sought to investigate the cause of disease in the remaining 30% by examining cilia-associated genes. METHODS: Whole-exome sequencing was performed on an LCA cohort of 212 unsolved probands previously screened for mutations in known retinal-disease genes. Immunohistochemistry using mouse retinas was used to confirm protein localization and zebrafish were used to perform rescue experiments. RESULTS: A homozygous nonsynonymous mutation was found in a single proband in CLUAP1, a gene required for ciliogenesis and cilia maintenance. Cluap1 knockout zebrafish exhibit photoreceptor cell death as early as 5 days after fertilization, and rescue experiments revealed that our proband's mutation is significantly hypomorphic. CONCLUSION: Consistent with the knowledge that CLUAP1 plays an important role in cilia function and that cilia are critical to photoreceptor function, our results indicate that hypomorphic mutations in CLUAP1 can result in dysfunctional photoreceptors without systemic abnormalities. This is the first report linking mutations in CLUAP1 to human disease and establishes CLUAP1 as a candidate LCA gene.Genet Med 18 10, 1044-1051.


Assuntos
Antígenos de Neoplasias/genética , Cílios/genética , Amaurose Congênita de Leber/genética , Degeneração Retiniana/genética , Animais , Pré-Escolar , Cílios/metabolismo , Cílios/patologia , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Amaurose Congênita de Leber/patologia , Masculino , Mutação , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia , Peixe-Zebra
20.
Proc Natl Acad Sci U S A ; 110(31): 12697-702, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858445

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal recessive disease caused by defective cilia motility. The identified PCD genes account for about half of PCD incidences and the underlying mechanisms remain poorly understood. We demonstrate that Reptin/Ruvbl2, a protein known to be involved in epigenetic and transcriptional regulation, is essential for cilia motility in zebrafish. We further show that Reptin directly interacts with the PCD protein Lrrc6/Seahorse and this interaction is critical for the in vivo function of Lrrc6/Seahorse in zebrafish. Moreover, whereas the expression levels of multiple dynein arm components remain unchanged or become elevated, the density of axonemal dynein arms is reduced in reptin(hi2394) mutants. Furthermore, Reptin is highly enriched in the cytosol and colocalizes with Lrrc6/Seahorse. Combined, these results suggest that the Reptin-Lrrc6/Seahorse complex is involved in dynein arm formation. We also show that although the DNA damage response is induced in reptin(hi2394) mutants, it remains unchanged in cilia biogenesis mutants and lrrc6/seahorse mutants, suggesting that increased DNA damage response is not intrinsic to ciliary defects and that in vertebrate development, Reptin functions in multiple processes, both cilia specific and cilia independent.


Assuntos
Dineínas do Axonema/metabolismo , Axonema/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Dineínas do Axonema/genética , Axonema/genética , Cílios/genética , Cílios/metabolismo , Dano ao DNA , Mutação , Proteínas Nucleares/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA