Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 210: 112902, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167851

RESUMO

Chromium is a toxic heavy metal prevalent in higher levels in aqueous matrices owing to industrial applications. Whilst being a key player in industries, the environmental issues caused by Cr(VI) are highly deleterious. Adsorptive remediation is found to be an effective method adopted by researchers in the past decades for Cr(VI) removal from water streams in which variety of naturally available biosorbents have been explored for handling Cr(VI). This review article briefly sketches up the biosorptive potential of plant-based biosorbents used in raw and chemically modified form for the optimum exclusion of Cr(VI) from aqueous sources. Mechanisms and kinetic behavior of the removal process are also discussed. pH of the solution and initial Cr(VI) concentration were found to be the key parameters in Cr removal. The mechanism of Cr removal from aqueous systems was elucidated to be either adsorption or adsorption-coupled-reduction. After precise discussion on various plant-based biosorbents with their maximum adsorption capacities, desorption and regeneration potential, it is perceived that plant-based biosorbents are superior options for Cr(VI) elimination from aqueous streams.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Plantas , Soluções , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Int J Biol Macromol ; 274(Pt 1): 133316, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908618

RESUMO

This study focuses on the optimization of Hydrastis canadensis-based nanocarriers in environmental and microbial applications like antibacterial and dye degradation. Hydrastis canadensis (H. canadensis) is loaded into the nanocarrier using a gelation method. Characterization involves pH analysis, UV-VIS spectrophotometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, high-performance liquid chromatography, encapsulation efficiency. Further antimicrobial activity against Staphylococcus aureus and Escherichia coli were tested. Dye degradation was evaluated at concentrations of 1 % of high molecular (HM) and 1.5 % of low molecular (LM) chitosan nanoparticles with both 3C and 1000C concentrations of the drug. The obtained results confirm the presence of chitosan nanocarrier alongside the pure drug in 1 % HM and 1.5 % LM chitosan particles with a notable encapsulation efficiency activity in both 3C and 1000C concentrations. Antimicrobial studies were carried out using the agar well diffusion method and revealed a significant zone of inhibition of 20 mm and 25 mm for E. coli and S. aureus, respectively in chitosan nanocarrier-loaded samples compared to pure drug and chitosan nanocarriers samples. The dye degradation studies of four dyes methylene blue, methylene orange, methylene red, and safranin using both pure drugs and chitosan nanocarrier-loaded drugs showed the highest percentage of degradation (76 %) against methylene blue in the chitosan nanocarrier-drug loaded formulation. These findings cumulatively underscore chitosan nanoparticles can be used as an effective carrier for Hydrastis Canadensis, with enhanced antimicrobial and dye degradation capabilities. Varied concentrations and molecular weights highlight the versatility of the ionotropic gelation method in optimizing drug delivery. Enhanced efficacy of the nanocarrier was evident in the observed zone of inhibition in antimicrobial testing. The substantial degradation percentage in methylene blue emphasizes the formulation's applicability in environmental dye removal processes, with potential avenues for improvement explored through interactions between the chitosan nanocarrier and H. canadensis characteristics. Future investigations may focus on scaling up the optimized formulation for large-scale applications and exploring release kinetics and comprehensive toxicity assessments for a holistic understanding of potential environmental and biomedical implications.

3.
Front Microbiol ; 15: 1357302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374917

RESUMO

The adverse effects of waste generation on the environment and public health have raised global concerns. The utilization of waste as a raw material to develop products with enhanced value has opened up novel prospects for promoting environmental sustainability. Biosurfactants obtained from agro-industrial waste are noteworthy due to their sustainability and environmental friendliness. Microorganisms have been employed to generate biosurfactants as secondary metabolites by making use of waste streams. The utilization of garbage as a substrate significantly reduces the expenses associated with the process. Furthermore, apart from reducing waste and offering alternatives to artificial surfactants, they are extensively employed in bioremediation, food processing, agriculture, and various other industrial pursuits. Bioremediation of heavy metals and other metallic pollutants mitigated through the use of bacteria that produce biosurfactants which has been the more recent research area with the aim of improving its quality and environmental safety. Moreover, the production of biosurfactants utilizing agricultural waste as a raw material aligns with the principles of waste minimization, environmental sustainability, and the circular economy. This review primarily focuses on the production process and various types of biosurfactants obtained from waste biomass and feedstocks. The subsequent discourse entails the production of biosurfactants derived from various waste streams, specifically agro-industrial waste.

4.
Front Microbiol ; 15: 1358467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468852

RESUMO

Introduction: Evaluating the anticancer property of Padina boergesenii mediated bimetallic nanoparticles. Methods: The present study focuses on synthesizing Se-ZnO bimetallic nanoparticles from an aqueous algal extract of brown algae Padina boergesenii.Synthesized Se-ZnO NPs were characterized by UV, FTIR, SEM-EDS and HRTEM for confirmation along with the anticancer activity by MTT assay. Results: The UV gave an absorbance peak at 342 and 370 nm, and the FTIR showed functional groups involved in synthesizing Se-ZnO NPs. The TEM micrographs indicated the crystalline nature and confirmed the size of the Se-ZnO NPs to be at an average size of 26.14 nm. Anticancer efficacy against the MCF-7 breast and HepG2 (hepatoblastoma) cell lines were also demonstrated, attaining an IC50 value of 67.9 µg and 74.9 µg/ml respectively, which caused 50% cell death. Discussion: This work aims to highlight an effective method for delivering bioactive compounds extracted from brown algae and emphasize its future therapeutic prospects. The potential of Selenium-Zinc oxide nanoparticles is of great interest due to the biocompatibility and low toxicity aspects of selenium combined with the cost-effectiveness and sustainability of zinc metal. The presence of bioactive compounds contributed to the stability of the nanoparticles and acted as capping properties.

5.
Bioengineered ; 14(1): 2252228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661811

RESUMO

Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Bioengenharia , Engenharia Biomédica
6.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947577

RESUMO

Nanomaterials are endowed with unique features and essential properties suitable for employing in the field of nanomedicine. The nanomaterials can be classified as 0D, 1D, 2D, and 3D based on their dimensions. The nanomaterials can be malleable and ductile and they can be drawn into wires and sheets. Examples of nanomaterials are quantum dots (0D), nanorods, nanowires (1D), nanosheets (2D), and nanocubes (3D). These nanomaterials can be synthesized using top-down and bottom-up approaches. The achievements of 0D and 1D nanomaterials are used to detect trace heavy metal (e.g., Pb2+) and have higher sensitivity with the order of five as compared to conventional sensors. The achievements of 2D and 3D nanomaterials are used as diagnostic and therapeutic agents with multifunctional ability in imaging systems such as PET, SPECT, etc. These imaging modalities can be used to track the drug in living tissues. This review comprises the state-of-the-art of the different dimensions of the nanomaterials employed in theranostics. The nanomaterials with different dimensions have unique physicochemical properties that can be utilized for therapy and diagnosis. The multifunctional ability of the nanomaterials can have a distinct advantage that is used in the field of theranostics. Different dimensions of the nanomaterials would have more scope in the field of nanomedicine.

7.
Int J Biol Macromol ; 146: 946-958, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730983

RESUMO

Extracellular vesicles (EVs) are gaining attention among the cell biologists and researchers over the last two decades. Prostasomes are considered to be (Evs) secreted by prostate epithelial cells into the semen during emission or ejaculation. Prostasomes contain various proteins required for immune regulation namely, amino and dipeptidyl peptidase; endopeptidase (neutral); decay accelerating factor; angiotensin-converting enzyme. Sperm cells need a few prerequisites in order to fertilize the egg. The role of prostasomes in enhancing the male fertility was reviewed extensively throughout the manuscript. Also, prostasomes have an immunosuppressive, immunomodulatory, antibacterial role in the female reproductive tract, and in some cases they can be used as immunocontraceptive agent to regulate the fertility status. This review will give insights to many active researchers in the field of prostasomal research and male infertility/fertility research. This review will open many unanswered mechanisms of prostasomes with respect to structure-function analysis, fatty acids patterns in diagnosis as well as prognosis of male infertility/fertility. More scientific reports are in need to support the mechanism of prostasomes and its role in immunomodulation. The development of prostasomes as a biomarker for the prostate cancer is still miserable with a lot of controversial results by various researchers.


Assuntos
Vesículas Extracelulares/metabolismo , Infertilidade Masculina/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Antioxidantes/metabolismo , Humanos , Infertilidade Masculina/imunologia , Masculino , Neoplasias da Próstata/imunologia , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA